РД 10-249-98 (с изм. 1 - РДИ 10-413(249)-01). 
Нормы расчета на прочность стационарных паровых и водогрейных котлов и трубопроводов пара и горячей воды

РД 10-249-98. Нормы расчета на прочность стационарных паровых и водогрейных котлов и трубопроводов пара и горячей воды

      Главная - ГОСТ и СНиП, СанПиН, НПБ, ПБ, скачать ГОСТы бесплатно, ГОСТ по охране труда, ППБ скачать бесплатно, сметная программа, GOST, SNIP, SANPiN Написать нам
 
   
 

 

 

 

Случайно выбранные документы:
ГОСТ 26601-85 - Окна и балконные двери деревянные для малоэтажных жилых домов. Типы, конструкция и размеры

 

 
Документы ->  Рд (руководящие документы) ->  РД 10-249-98 -> текст целиком

 

РД 10-249-98. Нормы расчета на прочность стационарных паровых и водогрейных котлов и трубопроводов пара и горячей воды

 

ФЕДЕРАЛЬНЫЙ ГОРНЫЙ И ПРОМЫШЛЕННЫЙ НАДЗОР РОССИИ

(ГОСГОРТЕХНАДЗОР РОССИИ)

 

 

НОРМЫ РАСЧЕТА НА ПРОЧНОСТЬ СТАЦИОНАРНЫХ КОТЛОВ

И ТРУБОПРОВОДОВ ПАРА И ГОРЯЧЕЙ ВОДЫ

 

РД 10-249-98

 

Дата введения 2001-09-01

 

 

УТВЕРЖДЕНЫ постановлением Госгортехнадзора России от 25.08.1998 № 50, с Изменением № 1 (РДИ 10-413(249)-01), утвержденное постановлением Госгортехнадзора России от 13.07.01 № 31.

 

Редакционная коллегия: В.С. Котельников, Н.А. Хапонен, А.А. Шельпяков (Госгортехнадзор России)

Ю.К. Петреня, Е.Э. Гильде, А.В. Судаков, А.А. Чижик, И.А. Данюшевский, П.В. Белов, А.М. Рейнов (АООТ НПО ЦКТИ им. И.И. Ползунова)

 

Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды распространяются на паровые котлы и паропроводы с избыточным рабочим давлением более 0,07 МПа и на водогрейные котлы и трубопроводы горячей воды с температурой свыше 115 °С.

Допускается применение Норм при расчете сосудов энергомашиностроения и корпусов арматуры тепловых электростанций и других установок.

Нормы не распространяются на котлы, трубопроводы, встроенные и автономные пароперегреватели и экономайзеры, устанавливаемые на морских и речных судах и на других плавучих средствах или объектах подводного применения, а также на подвижном составе железнодорожного, автомобильного и гусеничного транспорта, и на котлы с электрическим обогревом.

Для котлов и трубопроводов, находящихся в эксплуатации, в процессе монтажа или изготовления или оконченных проектированием до введения настоящих Норм, переоформление расчетов на прочность в соответствии с новыми нормами не требуется.

 

 

1. ОБЩИЕ ПОЛОЖЕНИЯ

 

Настоящие Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды распространяются на паровые котлы и паропроводы с рабочим давлением более 0,07 МПа и на водогрейные котлы и трубопроводы горячей воды с температурой свыше 115 °С:

на котлы с топкой, котлы-утилизаторы, энерготехнологические котлы и др.;

на встроенные и автономные пароперегреватели и экономайзеры;

на трубопроводы пара и горячей воды в пределах котла, включая опускные трубы, соединительные трубы и стояки;

на трубопроводы пара и горячей воды любого назначения;

на сосуды, подключенные к тракту котла (пароохладители, сепараторы и др.).

Допускается применение Норм при расчете сосудов энергомашиностроения и корпусов арматуры тепловых электростанций и других установок.

Нормы не распространяются на котлы, трубопроводы, встроенные и автономные пароперегреватели и экономайзеры, устанавливаемые на морских и речных судах и на других плавучих средствах или объектах подводного применения, а также на подвижном составе железнодорожного, автомобильного и гусеничного транспорта, и на котлы с электрическим обогревом.

Нормы должны применяться совместно с Правилами устройства и безопасной эксплуатации паровых и водогрейных котлов (ПГК-93), Правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды (ПГТ-94) и Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96). 

Для котлов и трубопроводов, находящихся в эксплуатации, в процессе монтажа или изготовления или оконченных проектированием до введения настоящих Норм, переоформление расчетов на прочность в соответствии с новыми нормами не требуется.

 

1.1. Основные условные обозначения

 

1.1.1. В формулах приняты следующие обозначения, представленные в табл.1.1.

 

Таблица 1.1

 

Символ

Название

Единица измерения

1

2

3

p

Расчетное давление

МПа

ph

Пробное давление

МПа

t

Расчетная температура стенки

°С

ta

Температура наружной поверхности детали

°С

[t]

Допустимая температура наружной поверхности детали

°С

[s]

Номинальное допускаемое напряжение при расчетной температуре стенки

МПа

[s]h

Допускаемое напряжение при гидравлическом испытании

МПа

sB/t; sB

Временное сопротивление металла разрыву при расчетной температуре и при 20 °С соответственно

МПа

s0,2/t; s0,2

Условный предел текучести металла при остаточной деформации 0,2% при расчетной температуре и при 20 °С соответственно

МПа

s0,1/t

Условный предел текучести металла при остаточной деформации 1% при расчетной температуре

МПа

sT/t

Предел текучести при расчетной температуре

МПа

, , ,

Условный предел длительной прочности при растяжении на ресурс 104, 105, 2·105 и 3·105 ч соответственно

МПа

Условный предел ползучести при растяжении, обусловливающий деформацию в 1% за 105 ч

МПа

s

Номинальная толщина стенки детали

мм

sR

Расчетная толщина стенки детали

мм

st

Фактическая толщина стенки детали

мм

c

Суммарная прибавка к расчетной толщине стенки

мм

c1, c2

Производственная и эксплуатационная прибавки к расчетной толщине стенки соответственно

мм

 

1.2. Область применения

 

1.2.1. Приведенные в Нормах методы расчета на прочность применимы при соблюдении следующих условий:

конструкция, материалы, изготовление, контроль, монтаж и ремонт котла, трубопровода и их деталей, работающих под давлением, удовлетворяют соответствующим требованиям Правил (ПГК-93, ПГТ-94, ПБ 10-115-96);

эксплуатация котла и трубопровода удовлетворяет требованиям не ниже требований правил технической эксплуатации, согласованных с Госгортехнадзором России (далее - госгортехнадзором), например "Правил технической эксплуатации электрических станций и сетей";

при монтаже, эксплуатации и ремонте обеспечено выполнение инструкций и указаний предприятия-изготовителя.

1.2.2. При расчете деталей, конструкция которых, способы изготовления и условия эксплуатации отличаются от общепринятых, установленных соответствующими Правилами, необходимо вводить коррективы, учитывающие особенности изготовления и эксплуатации. Для деталей, подверженных частым сменам нагрузки или колебаниям температуры, должны выполняться поверочные расчеты на малоцикловую усталость.

1.2.3. Прочность деталей, методы расчета которых в Нормах не приводятся, должна быть подтверждена изготовителем в результате проведения испытаний моделей или образцов либо расчетами на прочность, согласованными со специализированными научно-исследовательскими организациями. При этом должно быть обеспечено соблюдение запасов прочности не менее установленных настоящими Нормами.

1.2.4. Методика расчетов на прочность, приведенная в Нормах, предусматривает выполнение расчетов в прямом и обратном порядке. При прямом порядке расчетов определяется номинальная или допустимая толщина стенки по заданному или принятому расчетному давлению, при обратном порядке расчета определяется величина допустимого давления по фактической или номинальной толщине стенки. Обратный порядок расчета может быть назван контрольным расчетом. Выбор порядка расчета должен производиться организацией, выполняющей расчет.

В Нормах не приводятся последовательность и методика поверочного расчета, основной задачей которого является обоснование расчетного ресурса эксплуатации. Однако в поверочном расчете должны использоваться значения номинальных допускаемых напряжений и основные расчетные формулы и зависимости, приведенные в разделах 3, 4 данных Норм.

 

1.3. Расчетное давление

 

1.3.1. Под расчетным давлением p следует понимать избыточное давление рабочей среды, по которому производится расчет на прочность данной детали.

Расчетное давление должно приниматься конструкторской организацией в целях обеспечения расчетом на прочность, выполняемым этой организацией, надежности детали в условиях испытаний и эксплуатации.

Расчетное давление должно быть равно максимальному давлению рабочей среды, возможному для данной детали в нормальных условиях эксплуатации, или больше его. Необходимость превышения расчетного давления над рабочим, а также размеры этого превышения должны определяться конструкторской организацией с учетом особенности конструкции котла и его комплектации (например, предохранительными клапанами), назначения котла и опыта эксплуатации котла данного типа.

1.3.2. Расчетное давление детали котла p следует принимать равным расчетному давлению рабочей среды на выходе из котла (перегревателя), увеличенному на потерю давления от гидравлического сопротивления на участке между расчетной деталью и выходом рабочей среды из котла. Потеря давления должна определяться при максимальном расходе среды.

Для элементов, заполненных водой, следует прибавить гидростатическое давление столба воды, расположенного над нижней частью расчетного элемента.

Гидростатическое давление и потери гидравлического сопротивления принимаются в расчет, если их сумма равна или более 3% расчетного давления.

1.3.3. Расчетное давление рабочей среды на выходе из котла должно приниматься равным номинальному давлению при номинальной температуре и паропроизводительности (или номинальном расходе воды для водогрейного котла), увеличенному на положительное отклонение, вызванное регулированием величины номинального давления, если это отклонение превышает 3%.

1.3.4. Расчетное давление в трубах поверхностей нагрева или трубопроводах принимается равным давлению рабочей среды на входе в рассчитываемый пакет или трубопровод (в соответствующем коллекторе, барабане котла или полости теплообменника).

1.3.5. Расчетное давление в чугунных экономайзерах следует определять в соответствии с п.1.3.2; при этом оно должно быть не менее расчетного давления в котле, увеличенного на 25%.

1.3.6. Кратковременное повышение давления при полном открытии предохранительных клапанов в расчете допускается не учитывать, если при максимальной производительности котла оно не превышает 10% рабочего давления. Если это условие не соблюдается, то расчетное давление должно приниматься равным 90% давления при полном открытии предохранительных клапанов.

1.3.7. Расчетное давление в трубопроводах воды после насосов должно приниматься равным 90% максимального давления, создаваемого насосами при закрытых задвижках.

1.3.8. Во всех случаях величина расчетного давления должна приниматься не менее 0,2 МПа.

 

1.4. Расчетная температура

 

1.4.1. Под расчетной температурой стенки t следует понимать температуру металла, по которой выбирается величина допускаемого напряжения для рассчитываемой детали котла или трубопровода.

1.4.2. Расчетную температуру стенки деталей, не обогреваемых горячими газами или надежно изолированных от обогрева извне, следует принимать равной температуре содержащейся в ней рабочей среды без учета допусков по отклонению температуры рабочей среды от номинальной, установленных ГОСТ 3619, ГОСТ 21563, ГОСТ 22530.

Детали считаются надежно изолированными, если обеспечены условия, при которых повышение средней температуры стенки от тепловосприятия извне не будет превышать 5 °С.

Для экранов это условие соблюдается, если просвет между экранными трубами или между плавниками труб не превышает 3 мм.

1.4.3. За расчетную температуру стенки обогреваемых деталей следует принимать среднеарифметическое значение температур наружной и внутренней поверхности стенки в наиболее нагретой части детали, определенных теплотехническим расчетом или измерением.

1.4.4. Расчетную температуру стенки необогреваемых деталей котлов и трубопроводов следует принимать равной температуре среды на входе в расчетный элемент (при отсутствии внутри детали греющих теплообменников или при размещении в ней охлаждающего теплообменника) или равной температуре среды на выходе из детали (при размещении в ней греющих теплообменников).

1.4.5. Если избыточное давление горячих газов превышает 0,1 МПа, то расчетная температура стенки обогреваемых деталей должна приниматься по тепловому расчету или по данным измерений температуры.

1.4.6. Расчетную температуру стенки деталей котлов и трубопроводов в пределах котла следует принимать не менее 250 °С.

Допускается принимать расчетную температуру стенки необогреваемых деталей котлов и трубопроводов ниже 250 °С по согласованию со специализированными научно-исследовательскими организациями.

 

1.5. Толщина стенки и прибавки

 

1.5.1. Расчетная толщина стенки sR, вычисленная по формулам раздела 3 настоящих Норм, должна определяться по заданным значениям расчетного давления и номинального допускаемого напряжения с учетом ослабления отверстиями и (или) сварными соединениями.

1.5.2. Номинальная толщина стенки  должна приниматься по расчетной толщине стенки с учетом прибавок, указанных в пп.1.5.5 и 1.5.6, с округлением до ближайшего большего размера, имеющегося в сортаменте толщин соответствующих полуфабрикатов. Допускается округление в меньшую сторону не более 3% принятой окончательно номинальной толщины стенки.

1.5.3. Допустимая толщина стенки [s] должна определяться по расчетной толщине стенки с учетом эксплуатационной прибавки c2, определяемой согласно пп.1.5.5 и 1.5.7.

1.5.4. Фактическая толщина стенки sf, полученная непосредственными измерениями толщины готовой детали при операционном и (или) эксплуатационном контроле, должна быть не менее допустимой толщины стенки. Точность измерительного прибора, используемого при определении sf, следует учитывать, если его погрешность превышает 1%.

1.5.5. По назначению прибавки к расчетной толщине стенки следует подразделять:

на прибавку c1 (производственная прибавка), компенсирующую возможное понижение прочности детали в условиях изготовления детали за счет минусового отклонения толщины стенки полуфабриката, технологических утонений и др.;

на прибавку c2 (эксплуатационная прибавка), компенсирующую возможное понижение прочности детали в условиях эксплуатации за счет всех видов воздействия: коррозии, механического износа (эрозии) и др.

Утонение в результате абразивного износа труб учтено в приводимых значениях прибавки c2 только при выборе скорости газов, ограничивающих чрезмерный износ согласно "Тепловому расчету котельных агрегатов. Нормативный метод" (далее - "Тепловой расчет"). При большем износе прибавка на утонение из-за абразивного износа должна приниматься согласно "Тепловому расчету".

Сумма прибавок c = c1 +c2 должна быть не менее минимальных значений, указанных в разделе 3 и относящихся к расчету конкретных деталей.

1.5.6. Производственная прибавка c1 состоит из прибавки, компенсирующей минусовое отклонение c11, и технологической прибавки c12:с1 = с11 + с12.

Значение прибавки с11 следует определять по предельному минусовому отклонению толщины стенки, установленному стандартами или техническими условиями на полуфабрикаты; значение прибавки с12 должно определяться технологией изготовления детали и принимается по техническим условиям на изделие.

Для прямых труб и обечаек, подвергающихся на предприятии-изготовителе механической обработке, с11 = 0; для деталей, деформирование которых при изготовлении не приводит к ослаблению стенки заготовки, с12 = 0.

1.5.7. Эксплуатационная прибавка состоит из прибавок, компенсирующих понижение прочности по пароводяной стороне с21 и со стороны газов с22.

Значение прибавки с21 для всех обогреваемых и необогреваемых деталей из аустенитных сталей, а также для труб наружным диаметром 32 мм и менее из углеродистой и теплоустойчивой сталей равно нулю. Для остальных деталей (труб наружным диаметром более 32 мм, коллекторов, барабанов, фасонных деталей и трубопроводов и других, изготовляемых из углеродистой и теплоустойчивой сталей) значение прибавки с21 на расчетный ресурс 105 ч должно определяться по табл.1.2.

 

Таблица 1.2

 

Прибавка с21, мм

 

Рабочая среда

Трубы диаметром свыше 32

до 76 мм включительно

Остальные детали

Вода, пароводяная смесь, насыщенный пар

0,5

1,0

Перегретый пар

0,3

0,5

Среда сверхкритических параметров

-

0,3

 

Примечание. Для гибов опускных, водоперепускных и необогреваемых труб для пароводяной смеси и насыщенного пара наружным диаметром более 76 мм при рабочем давлении котла от 8 до 20 МПа следует принимать прибавку с21 от 1 до 3 мм в зависимости от опыта эксплуатации котла данного типа; для труб наружным диаметром 133 мм и более использование прибавки с21 менее 3 мм должно быть согласовано со специализированными научно-исследовательскими организациями.

 

При расчетном ресурсе более 105 ч прибавку с21 следует увеличить с учетом скорости коррозии; при ресурсе до 2·105 ч допускается принимать (впредь до уточнения) значение этой прибавки такой, как при ресурсе 105 ч.

При расчетном ресурсе менее 105 ч прибавку с21 допускается принимать уменьшенной пропорционально ресурсу.

Значение прибавки с22 для необогреваемых деталей равно нулю.

Значение прибавки с22 для обогреваемых деталей должно приниматься в зависимости от температуры наружной поверхности детали, вида топлива и металла детали. Для определения прибавки с22 температура наружной поверхности детали должна сравниваться с допустимой температурой, значения которой приведены в табл.1.3. Расчетная температура наружной поверхности обогреваемых деталей, определяемая по тепловому расчету с учетом тепловой и гидравлической неравномерности, но без учета временного увеличения неравномерности обогрева, не должна превышать значений допустимой температуры [t].


Таблица 1.3

 

Допустимая температура наружной поверхности с учетом

продуктов сгорания [t], °С

 

Марка стали

Высокосернистые и сернистые мазуты

Эстонские сланцы

Остальные энергетические топлива, кроме новых

10

450

400

450

20

500

450

500

12ХМ, 12МХ, 15ХМ, 10СrМо910 (хролой)

550

530

550

12Х1МФ, 12Х2МФСР

585

540

585

12Х2МФБ

585

545

600

12Х11В2МФ

620

560

630

12Х18Н12Т, 12Х18Н10Т

610

610

640

 

Примечание. Допустимая температура наружной поверхности экранных труб из стали 12Х1МФ, расположенных в зоне максимальных тепловых нагрузок более 407 кВт/м2 (350·103 ккал/(м2·ч), при сжигании сернистых мазутов не должна превышать 545 °С с учетом запаса на межпромывочный период.

 

Для необогреваемых участков труб из стали марок 12Х1МФ, 12Х2МФСР и 12Х2МФБ, соединяющих трубы поверхности нагрева из аустенитной стали с коллекторами из легированной стали, допускается температура стенки до 600 °С.

Значение прибавки с22 для ресурса 105 ч должно приниматься минимальным из условий:

при температуре наружной поверхности ta < ([t]-40)°С

c1 + c2 ³ 0,5 мм;

при температуре согласно условию ([t] - 40) °C < ta £ [t]

c1 + c2 ³ 1,0 мм.

Для обогреваемых углеродистых труб общего назначения (например, из стали марки Ст3) прибавка c22 должна приниматься не менее 0,4 мм независимо от температуры стенки, марки стали и категории качества.

Для стали марки 12Х18Н12Т при сжигании высокосернистых и сернистых мазутов и для сталей марок 12Х1МФ, 12Х2МФСР и 12Х2МФБ при сжигании эстонских сланцев допускается температура наружной поверхности деталей выше допустимой, но не более значений температуры, установленных для остальных энергетических топлив, при условии увеличения значения прибавки c22 на 0,5 мм в первом случае и на 0,3 мм во втором на каждые 10 °С повышения температуры.

Для ресурса эксплуатации менее 105 ч значение прибавки c22 к фактической толщине стенки допускается принимать пропорционально отношению данного ресурса к ресурсу в 105 ч.

При выборе расчетной температуры наружной поверхности труб экранов котлов сверхкритических параметров следует учитывать повышение этой температуры в течение межпромывочного периода.

Для труб, находящихся в теплом ящике энергетического котла, значения прибавки с22 должны приниматься равными 0,5 значения, определяемого для обогреваемых труб при той же расчетной температуре наружной поверхности.

Расчетная температура стенок труб в теплом ящике должна приниматься равной температуре рабочей среды с учетом неравномерностей ее распределения.

1.5.8. При вычислении и измерении толщины стенки в документацию следует записывать значение с округлением до 0,1 мм.

 

2. ДОПУСКАЕМОЕ НАПРЯЖЕНИЕ

 

2.1. Под номинальным допускаемым напряжением [s] следует понимать величину напряжения, используемую для определения расчетной толщины стенки детали или допустимого давления по принятым исходным данным и марке металла.

Приведенные в настоящих Нормах допускаемые напряжения и указания по их выбору применимы при использовании металлов и полуфабрикатов, которые разрешены Правилами госгортехнадзора.

Уровень расчетных характеристик используемых металлов и полуфабрикатов должен быть подтвержден статистической обработкой данных испытаний, периодическим контролем качества продукции не реже одного раза в 5 лет и положительным заключением специализированной научно-исследовательской организации в соответствии с требованиями Правил госгортехнадзора.

2.2. Номинальные допускаемые напряжения для катаной или кованой стали марок, широко используемых в котлах и трубопроводах, следует принимать по табл.2.1-2.5.

 

Таблица 2.1

 

Номинальные допускаемые напряжения [s] для углеродистой и

марганцовистой сталей, не зависящие от расчетного ресурса, МПа

 

 

Марка стали

t, °С

Ст2кп

Ст3кп

Ст2сп, Ст2пс

Ст3сп, Ст3пс

Ст4пс, Ст4сп

С3Гпс

22К

14ГНМА

16ГНМ, 16ГНМА

От 20

до 50

124

133

130

140

145

150

170

180

190

150

106

115

112

125

129

134

155

179

181

200

 

111

100

117

121

125

147

175

176

250

80

102

86

107

111

115

140

171

172

275

 

 

 

102

106

109

135

170

169

300

 

 

70

 

98

103

130

169

167

320

 

 

 

 

 

 

126

164

165

340

 

 

 

 

 

 

122

161

163

350

 

 

 

 

 

 

120

159

161

360

 

 

 

 

 

 

 

157

159

370

 

 

 

 

 

 

 

155

157

380

 

 

 

 

 

 

 

152

154

 

Таблица 2.2

 

Номинальные допускаемые напряжения [s]

для углеродистой и марганцовистой сталей, МПа

 

 

Марка стали

t, °С

08, 10, 12К

15, 15К, 16К

20, 20К, 18К

 

Расчетный ресурс, ч

 

104

105

2·105

3·105

104

105

2·105

104

105

2·105

3·105

1

2

3

4

5

6

7

8

9

10

11

12

От 20

до 100

-

130

-

-

-

140

-

-

147

-

-

200

-

120

-

-

-

130

-

-

140

-

-

250

-

108

-

-

-

120

-

-

132

-

-

275

-

102

-

-

-

113

-

-

126

-

-

300

-

96

-

-

-

106

-

-

119

-

-

320

-

92

-

-

-

101

-

-

114

-

-

340

-

87

-

-

-

96

-

-

109

-

-

350

-

85

-

-

-

93

-

-

106

-

-

360

-

82

-

82

-

90

-

-

103

-

103

380

-

76

76

71

-

85

85

-

97

97

88

400

73

73

66

60

80

80

72

92

92

78

71

410

70

68

61

55

77

72

65

89

86

70

63

420

68

62

57

50

74

66

58

86

79

63

56

430

66

57

51

45

71

60

52

83

72

57

50

440

63

51

45

40

68

53

45

80

66

50

44

450

61

46

38

35

65

47

38

77

59

46

39

460

58

40

33

29

62

40

33

74

52

38

34

470

52

34

28

24

54

34

28

64

46

32

28

480

45

28

22

18

46

28

22

56

39

27

24

490

39

24

 

 

40

24

 

49

33

 

 

500

33

20

 

 

34

20

 

41

26

 

 

510

26

 

 

 

 

 

 

35

 

 

 

 

Продолжение табл.2.2

 

 

Марка стали

t, °С

16ГС, 09Г2С

10Г2С1, 17ГС, 17Г1С, 17Г1СУ

15ГС

 

Расчетный ресурс, ч

 

104

105

2·105

104

105

2·105

104

105

2·105

1

2

3

4

5

6

7

8

9

10

От 20

до 100

-

170

-

-

177

-

-

185

-

200

-

150

-

-

165

-

-

169

-

250

-

145

-

-

156

-

-

165

-

275

-

140

-

-

150

-

-

161

-

300

-

133

-

-

144

-

-

153

-

320

-

127

-

-

139

-

-

145

-

340

-

122

-

-

133

-

-

137

-

350

-

120

-

-

131

-

-

133

-

360

-

117

-

-

127

-

-

129

-

380

-

112

112

-

121

121

-

121

121

400

107

107

95

113

113

96

113

113

96

410

104

97

83

107

102

85

107

102

85

420

102

87

73

102

90

75

102

90

75

430

98

76

63

97

78

65

97

78

65

440

95

68

55

92

70

55

92

70

55

450

89

62

46

88

63

46

88

63

46

460

83

54

38

82

54

38

82

54

38

470

71

46

32

71

46

32

71

46

32

480

60

 

 

60

 

 

60

 

 

490

 

 

 

 

 

 

 

 

 

 

Примечания: 1. Выше черты приведены значения напряжений, определяемые по пределу текучести в зависимости от температуры.

2. Значения допускаемых напряжений в колонках для ресурса 104 и 2·105 ч, отмеченные выше черты знаком "-", принимаются равными соответствующим значениям в колонке для ресурса 105 ч.

3. Значения допускаемых напряжений, указанные ниже черты, соответствуют работе элементов в условиях ползучести и определены по пределу длительной прочности для соответствующего ресурса.


Таблица 2.3

 

Номинальные допускаемые напряжения [s] для теплоустойчивой стали, МПа

 

 

Марка стали

t, °С

12ХМ, 12МХ

15ХМ

 

Расчетный ресурс, ч

 

104

105

2·105

3·105

104

105

2·105

3·105

1

2

3

4

5

6

7

8

9

От 20

до 150

-

147

-

-

-

153

-

-

250

-

145

-

-

-

152

-

-

300

-

141

-

-

-

147

-

-

350

-

137

-

-

-

140

-

-

400

-

132

-

-

-

133

-

-

420

-

129

-

-

-

131

-

-

440

-

126

-

-

-

128

-

-

450

-

125

-

-

-

127

-

-

460

-

123

123

123

-

125

125

125

480

120

120

102

102

122

122

113

103

500

116

95

77

64

119

105

85

76

510

114

78

60

53

117

85

72

62

520

107

66

49

43

110

70

58

50

530

93

54

40

35

97

56

44

39

540

77

43

 

 

80

45

35

31

550

60

 

 

 

62

35

26

23

560

 

 

 

 

52

27

 

 

570

 

 

 

 

42

21

 

 

580

 

 

 

 

 

 

 

 

590

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

610

 

 

 

 

 

 

 

 

620

 

 

 

 

 

 

 

 

 

Продолжение табл.2.3

 

 

Марка стали

t, °С

12Х1МФ

12Х2МФСР

15Х1 М1Ф

 

Расчетный ресурс, ч

 

104

105

2·105

3·105

104

105

2·105

104

105

2·105

3·105

1

2

3

4

5

6

7

8

9

10

11

12

От 20

до 150

-

173

-

-

-

167

-

-

192

-

-

250

-

166

-

-

-

160

-

-

186

-

-

300

-

159

-

-

-

153

-

-

180

-

-

350

-

152

-

-

-

147

-

-

172

-

-

400

-

145

-

-

-

140

-

-

162

-

-

420

-

142

-

-

-

137

-

-

158

-

-

440

-

139

-

-

-

134

-

-

154

-

-

450

-

138

-

138

-

133

-

-

152

-

-

460

-

136

136

130

-

131

131

-

150

150

150

480

133

133

120

107

128

128

119

146

145

130

123

500

130

113

96

88

121

106

97

140

120

108

100

510

120

101

86

79

115

94

87

137

107

96

90

520

112

90

77

72

105

85

79

125

96

86

80

530

100

81

69

65

95

78

70

111

86

77

72

540

88

73

62

58

87

70

63

100

78

69

65

550

80

66

56

52

80

63

56

90

71

63

58

560

72

59

50

46

72

57

50

81

64

57

52

570

65

53

44

41

65

52

45

73

57

51

47

580

59

47

39

36

59

46

41

66

52

46

43

590

53

41

35

32

53

41

36

60

47

42

39

600

47

37

31

29

47

37

33

54

43

38

35

610

41

33

 

 

41

33

28

48

40

 

 

620

35

 

 

 

35

 

 

43

 

 

 

 

Примечания: 1. Выше черты приведены значения напряжений, определяемые по пределу текучести в зависимости от температуры.

2. Значения допускаемых напряжений в колонках для ресурса 104, 2·105 и 3·105 ч, отмеченные выше черты знаком "-", принимаются равными соответствующим значениям в колонке для ресурса 105 ч.

3. Значения допускаемых напряжений, указанные ниже черты, соответствуют работе элементов в условиях ползучести и определены по пределу длительной прочности для соответствующего ресурса.

 

Таблица 2.4

Номинальные допускаемые напряжения [s]

для высокохромистой и аустенитной сталей, МПа

 

 

Марка стали

t, °С

12Х11В2МФ

12Х18Н12Т; 12Х18Н10Т

09Х14Н19В2БР, 09Х16Н14В2БР, 10Х16Н16В2МБР

 

Расчетный ресурс, ч

 

104

105

2·105

104

105

2·105

3·105

104

105

2·105

1

2

3

4

5

6

7

8

9

10

11

От 20

до 150

-

195

-

-

147

-

-

-

147

-

250

-

183

-

-

125

-

-

-

131

-

300

-

175

-

-

120

-

-

-

128

-

350

-

167

-

-

116

-

-

-

125

-

400

-

158

-

-

111

-

-

-

123

-

450

-

152

-

-

107

-

-

-

120

-

500

145

145

145

-

104

-

-

-

117

-

520

143

134

128

-

103

-

-

-

116

-

530

141

124

119

-

103

-

102

-

116

-

540

140

115

108

-

102

102

100

-

115

-

550

130

107

100

-

102

100

93

-

115

-

560

121

97

90

101

101

91

87

-

114

-

570

113

87

80

101

97

87

81

-

114

-

580

104

78

72

100

90

81

74

-

113

113

590

95

69

64

98

81

73

68

-

113

109

600

87

60

55

94

74

66

62

112

112

102

610

78

51

47

88

68

59

55

111

104

94

620

70

47

39

82

62

53

50

111

97

87

630

62

37

31

78

57

49

46

110

89

79

640

54

27

23

72

52

45

42

110

81

72

650

45

20

 

65

48

41

38

109

74

64

660

38

 

 

60

45

37

 

103

66

56

670

30

 

 

55

41

34

 

96

59

49

680

 

 

 

50

38

32

 

88

52

41

690

 

 

 

45

34

28

 

79

44

34

700

 

 

 

40

30

25

 

71

37

27

 

Примечания: 1. Выше черты приведены значения напряжений, определяемые по пределу текучести в зависимости от температуры.

2. Значения допускаемых напряжений в колонках для ресурса 104, 2·105 и 3·105 ч, отмеченные выше черты знаком "-", принимаются равными соответствующим значениям в колонке для ресурса 105 ч.

3. Значения допускаемых напряжений, указанные ниже черты, соответствуют работе элементов в условиях ползучести и определены по пределу длительной прочности для соответствующего ресурса.

 

Таблица 2.5

Рекомендуемая

 

Номинальные допускаемые напряжения [s] для стали 10Х9МФБ, МПа

 

t, °С

Расчетный ресурс, ч

 

104

105

2·105

1

2

3

4

От 20 до 150

-

167

-

250

-

160

-

300

-

157

-

350

-

154

-

400

-

151

-

450

-

148

-

470

-

147

147

480

146

146

143

490

145

138

132

500

145

127

122

520

127

108

102

540

109

90

83

550

100

 

 

560

 

 

 

570

 

 

 

580

78

 

 

590

71

58

53

600

 

52*

 

610

62*

50*

 

620

60*

48*

 

630

57*

45*

 

640

55*

43*

 

650

52*

41*

 

 

Примечания: 1. Выше черты приведены значения допускаемых напряжений, определяемых по пределу текучести в зависимости от температуры.

2. Значения допускаемых напряжений в колонках для ресурса 104 и 2·105 ч, отмеченные выше черты знаком "-", принимаются равными соответствующим значениям в колонке для ресурса 105 ч.

3. Значения допускаемых напряжений, указанные ниже черты, соответствуют работе элементов в условиях ползучести и определены по пределу длительной прочности для соответствующего ресурса.

4. Значения допускаемых напряжений со знаком * получены экстраполяцией с малых по времени баз испытаний и должны быть откорректированы с учетом требований подраздела 2.1.

 

Для промежуточных значений ресурса эксплуатации, указанных в таблицах, значение допускаемого напряжения разрешается определять линейной интерполяцией ближайших значений между ресурсами с округлением до 0,5 МПа в меньшую сторону, если разница между этими значениями не превышает 20% их среднего значения. В остальных случаях должно применяться "логарифмическое" интерполирование. Экстраполяция значений допускаемых напряжений для ресурса менее 104 не допускается без согласования со специализированными научно-исследовательскими организациями.

Допускаемые напряжения для сталей иностранных марок, допущенных к применению Госгортехнадзором России, должны устанавливаться специализированными научно-исследовательскими организациями. Для стали 2.1/4 Сr1Мо (10СrМо910 для труб по ДИН 17175 и для листа по ДИН 17155) могут быть использованы значения допускаемых напряжений, приведенные в табл.2.6.

 

Таблица 2.6

 

Номинальные допускаемые напряжения для стали 2 1/4 Сr1Мо

(10СrМо910) на расчетный ресурс 105 ч

 

t, °С

[s] , МПа

20-100

180

200

163

250

160

300

153

350

146

400

140

450

133

480

123

500

96

520

73

540

53

560

38

580

28

 

2.3. Для сталей марок, не приведенных в табл.2.1-2.4, и для других металлов, допущенных к применению Госгортехнадзором России, номинальное допускаемое напряжение следует принимать равным наименьшему из приведенных в табл.2.7 значений, полученных в результате деления соответствующей расчетной характеристики прочности металла при растяжении на соответствующий запас прочности по данной характеристике.

 

Таблица 2.7

 

Формулы для определения номинального допускаемого напряжения [s],

не зависящего от расчетного ресурса, или для расчетного ресурса 105 ч

 

Материал

Формула

1

2

Углеродистая и теплоустойчивая сталь*

,

,

,

Аустенитная хромоникелевая сталь

,

,

,

Чугун с шаровидным графитом при d5 ³ 12 % после отжига

,

 

 

Чугун с пластинчатым графитом, ковкий чугун и чугун с шаровидным графитом при d5 < 12 %:

 

после отжига

   

без отжига

   

Медь и медные сплавы

,

,

,

 

* Для углеродистой и теплоустойчивой стали повышенной прочности (sB > 490 МПа и минимальное относительное удлинение d5 < 20%) запас прочности по пределу текучести следует увеличить на 0,025 на каждый процент уменьшения относительного удлинения ниже 20%.

** Характеристики прочности должны определяться без учета термического и механического упрочнения. Условие неприменимо для деталей, в которых недопустима пластическая деформация (фланцы, шпильки). Допускается использовать минимальное значение условного предела текучести при остаточной деформации 0,2% с запасом 1,15.

*** При расчете на изгиб допускаемые напряжения принимаются уменьшенными на 50%.

**** Условие используется, если в стандартах или технических условиях на металл отсутствуют гарантируемые значения sB, s1,0/t, s105/t.

 

При выполнении контрольных расчетов деталей, изготовленных из стали 12ХМФ, допускается использовать значения допускаемых напряжений, приведенных в табл.2.1-2.4. для стали 12Х1МФ.

2.4. В качестве расчетных характеристик прочности металла следует принимать:

временное сопротивление при растяжении sB;

предел текучести sT/t или условный предел текучести s0,2/t, s1,0/t;

условный предел длительной прочности s104/t, s105/t, s2×105/t, s3×105/t,

условный предел ползучести s1/105/t.

Значения характеристик sB, sT/t, s0,2/t, s1,0/t следует принимать равными минимальным значениям, установленным в соответствующих стандартах или технических условиях для металла данной марки.

Значения характеристик s104/t, s105/t, s2×105/t, s3×105/t и s1/105/t следует принимать равными средним значениям, установленным в соответствующих стандартах или технических условиях для металла данной марки.

Отклонения характеристик в меньшую сторону допускаются не более чем на 20% от среднего значения.

Допускается использование sT/t вместо s0,2/t, если в стандартах или технических условиях на металл нормированы значения sT/t и отсутствуют нормированные значения s0,2/t.

Уровень расчетных характеристик используемых металлов и полуфабрикатов должен быть подтвержден статистической обработкой данных испытаний, периодическим контролем качества продукции и положительным заключением специализированной научно-исследовательской организации в соответствии с требованиями Правил госгортехнадзора.

2.5. Для стальных отливок номинальное допускаемое напряжение следует принимать равным следующим величинам:

85% значений допускаемого напряжения, определенного согласно табл.2.1-2.4 для одноименной марки катаной или кованой стали, если отливки подвергаются сплошному неразрушающему контролю;

75% от указанных в табл.2.1-2.4. значений, если отливки не подвергаются сплошному неразрушающему контролю.

2.6. Для стальных деталей, работающих в условиях ползучести при разных за расчетный ресурс расчетных температурах, за допускаемое разрешается принимать напряжение [s]e, вычисленное по формуле

,

 

где t1, t2, ..., tn - длительность периодов эксплуатации деталей с температурой стенки соответственно t1, t2, ..., tn, ч;

[s]1, [s]2, ..., [s]n - номинальные допускаемые напряжения для расчетного ресурса при температурах t1, t2, ..., tn, МПа;

- общий расчетный ресурс, ч;

m - показатель степени в уравнении длительной прочности стали.

Для углеродистых, низколегированных хромомолибденовых и хромомолибденованадиевых, а также аустенитных сталей допускается принимать m = 8. Периоды эксплуатации при разной температуре стенки рекомендуется принимать по интервалам температуры 5 или 10 °С.

Определение эквивалентных напряжений по приведенной упрощенной методике рекомендуется принимать для интервала температур не более 30 °С. При необходимости определения эквивалентных допускаемых напряжений для интервала температур более 30 °С следует использовать среднее значение показателя степени согласно данным экспериментальных исследований с базой испытаний не менее 0,1 от ресурса, но не менее 104 ч.

2.7. Расчетные характеристики прочности и номинальные допускаемые напряжения следует принимать для расчетных температур стенки, определенных согласно п.1.4.

2.8. При определении допустимой величины пробного давления допускаемое напряжение должно приниматься согласно табл.2.8.

 

Таблица 2.8

 

Формулы для определения допускаемого напряжения

при вычислении пробного давления

 

Материал

Формула

Углеродистая, теплоустойчивая и аустенитная сталь (катаная и кованая)

Стальные отливки

Отливки из чугуна с шаровидным графитом при d5 ³ 12 %

 

,

Отливки из чугуна с пластинчатым графитом, из ковкого чугуна и чугуна с шаровидным графитом при d5 < 12 %

 

Медь и медные сплавы

,

 

* Условие используется, если в стандартах или технических условиях на металл характеристики нормированы.

 

2.9. При расчете стальных деталей, работающих под наружным давлением, допускаемое напряжение должно быть уменьшено в 1,2 раза по сравнению со случаем, когда используются формулы расчета по внутреннему давлению (например, для дымогарных труб).

 

Таблица 2.9

Рекомендуемая

 

Номинальные допускаемые напряжения [s] для расчетного ресурса 4·105 ч

 

t, °С

Марка стали

 

20

12МХ

15ХМ

12Х1МФ

15Х1М1Ф

1

2

3

4

5

6

360

103

-

-

-

-

380

83

-

-

-

-

400

62

-

-

-

-

410

57

-

-

-

-

420

51

-

-

-

-

430

45

-

-

-

-

440

39

-

-

-

-

450

35

-

-

138

-

460

30

123

125

125

150

470

25

104

115

115

125

480

21

85

98

103

110

490

-

75

82

92

100

500

-

63

68

83

92

510

-

48

58

76

84

520

-

37

46

66

75

530

-

31

35

59

67

540

-

-

28

53

60

550

-

-

20

48

54

560

-

-

-

43

49

570

-

-

-

38

44

580

-

-

-

34

40

590

-

-

-

30

36

600

-

-

-

27

32

 

3. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ СТЕНКИ ЭЛЕМЕНТОВ,

РАБОТАЮЩИХ ПОД ВНУТРЕННИМ ДАВЛЕНИЕМ

 

3.1. Условные обозначения

 

3.3.1. В Нормах приняты условные обозначения, представленные в табл.3.1.

 

Таблица 3.1

 

Символ

Название

Единица измерения

1

2

3

D

Внутренний диаметр расчетной детали

мм

Da

Наружный диаметр расчетной детали

мм

Dm

Средний диаметр расчетной детали

мм

j

Расчетный коэффициент прочности

-

jd

Коэффициент прочности при ослаблении отверстиями

-

jc

Коэффициент прочности при ослаблении отверстиями с учетом укрепления

-

jw

Коэффициент прочности при ослаблении сварными соединениями

-

s0

Минимальная расчетная толщина стенки без прибавок при j = 1,0

мм

D

Предельное минусовое отклонение по толщине стенки детали

%

d

Диаметр отверстия в расчетной детали

мм

[p]

Допустимое рабочее давление

МПа

tm

Температура рабочей среды (для насыщенного пара принимается при расчетном давлении)

°С

Dt

Превышение температуры рабочей среды, поступающей в коллектор из отдельных змеевиков, над средней ее температурой; это превышение связано с режимными и гидродинамическими условиями работы котла

°С

R

Радиус кривизны оси криволинейного коллектора

мм

s

Приведенное напряжение от внутреннего давления

МПа

sRi (i = 1, 2, 3)

Расчетная толщина стенки колена на внешней, внутренней и нейтральной стороне соответственно

мм

Da max, Da min

Максимальный и минимальный наружный диаметр сечения колена соответственно

мм

a

Овальность поперечного сечения колена:

%

Ki (i = 1, 2, 3)

Торовый коэффициент колена

-

Yi (i = 1, 2, 3)

Коэффициент формы колена

-

h

Высота выпуклой части эллиптического или полусферического (полушарового) днища при номинальном внутреннем диаметре

мм

ha

Высота выпуклой части полусферического днища при номинальном наружном диаметре

мм

l

Длина цилиндрического борта выпуклого днища или расстояние от оси сварного шва до плоского днища

мм

s1

Номинальная толщина плоского днища или крышки (заглушки) в плоской части

мм

s1R

Расчетная толщина плоского днища или крышки в плоской части

мм

s2

Толщина плоского днища в месте кольцевой выточки у перехода к цилиндрической части

мм

s3

Толщина крышки по участку действия усилия от болтов (шпилек)

мм

Dk

Расчетный диаметр крышки

мм

Db

Диаметр окружности центров болтов крышки

мм

Du

Средний диаметр прокладки уплотнения крышки

мм

r

Внутренний радиус закругления

мм

n

Длина в свету большего диаметра овальной плоской крышки или большей стороны в свету прямоугольного днища или крышки

мм

m

Длина в свету меньшего диаметра овальной плоской крышки или меньшей стороны в свету прямоугольного днища или крышки

мм

Y

Коэффициент, учитывающий отношение сторон овальной или прямоугольной крышки

-

Km

Коэффициент, характеризующий тип крышки

-

K

Коэффициент, характеризующий тип днища

-

K0

Коэффициент, учитывающий ослабление днища отверстиями

-

Sdi

Сумма диаметров отверстий или их хорд в диаметральном сечении круглого плоского днища

мм

 

3.2. Цилиндрические барабаны и коллекторы

 

3.2.1. Расчет толщины стенки

 

3.2.1.1. Номинальная толщина стенки обечаек барабана (корпуса котла) или цилиндрической части коллектора должна быть не менее определенной по формуле

,

где  , если расчет выполняется по наружному диаметру, и

,если расчет выполняется по внутреннему диаметру.

Формулы пригодны при соблюдении следующих условий:

для барабанов и коллекторов, содержащих воду, пароводяную смесь или насыщенный пар:

 или ;

для коллекторов, содержащих перегретый пар:

.

Для криволинейных и торовых коллекторов при  расчет толщины стенки должен производиться с учетом п.3.3.2.

3.2.1.2. Расчетные коэффициенты прочности j обечаек барабанов и цилиндрической части коллекторов с отверстиями и (или) со сварными соединениями следует определять согласно разделу 4.

3.2.1.3. Для барабанов, изготовляемых из листов разной толщины и соединяемых продольными швами при стыковке листов по совпадению средних диаметров, расчет толщины стенки должен производиться для каждого листа с учетом имеющихся в нем ослаблений.

При стыковке листов разной толщины по внутреннему диаметру требуется дополнительно проверить местные напряжения в месте стыка листов по методике расчета на прочность, согласованной со специализированными научно-исследовательскими организациями.

3.2.1.4. Суммарная прибавка c должна приниматься согласно разделу 1.

Для обечаек барабанов и коллекторов, свариваемых из листа, а также кованых с последующей механической обработкой при номинальной толщине стенки более 20 мм допускается принимать c11 = 0. Если наибольшее минусовое отклонение по толщине листа превышает 3%, то в прибавке c11 следует учесть это превышение.

Для коллекторов, изготовляемых из труб, прибавка c11 должна определяться по формуле

,

если неизвестна номинальная толщина стенки, и по формуле

,

если номинальная толщина стенки известна или предварительно принята.

Для обечаек барабанов и прямолинейных коллекторов c12 = 0.

Для криволинейных коллекторов при R/Da £ 5 значение прибавки c12 должно приниматься так же, как для колен.

Для обечаек барабанов из стали повышенной прочности при sB ³ 550 МПа и рабочем давлении более 8 МПа прибавка c21 должна предусматривать возможность удаления коррозионно-усталостных дефектов без заварки; она принимается в зависимости от условий и опыта эксплуатации котла данного типа, что должно согласовываться со специализированными научно-исследовательскими организациями; значение прибавки должно быть не менее 5 мм. Прибавка менее 5 мм должна согласовываться со специализированными научно-исследовательскими организациями.

3.2.1.5. При выборе номинальной толщины стенки необходимо учитывать следующее:

номинальная толщина стенки барабана или коллектора, изготовляемых из листа, должна быть не менее 6 мм; допускается для котлов паропроизводительностью менее 1 т/ч при рабочем давлении не более 0,5 МПа принимать номинальную толщину стенки не менее 4 мм;

номинальная толщина стенки коллектора при изготовлении и фактическая толщина стенки коллектора при эксплуатации должны быть не менее значений, указанных в табл.3.2, но не менее значений, полученных в результате расчетов на прочность;

 

Таблица 3.2

 

s, мм

Da, мм

 

< 51

£ 70

£ 90

£ 108

> 108

При изготовлении

2,5

3,0

4,0

4,5

5,0

При эксплуатации

2,0

2,4

3,2

3,6

4,0

 

толщину стенок барабанов и коллекторов, к которым присоединяются трубы при помощи развальцовки, рекомендуется принимать не менее 16 мм; применение стенок толщиной менее 13 мм не допускается;

толщина стенок обогреваемых барабанов и коллекторов без изоляции должна быть не более следующей:

22 мм для барабанов и 10 мм для коллекторов, расположенных в топке;

30 мм для барабанов и 13 мм для коллекторов, расположенных в газоходах при температуре газов не выше 900 °С;

50 мм для барабанов и 20 мм для коллекторов, расположенных в газоходах при температуре газов не выше 600 °С.

Указанные толщины могут быть увеличены, если это будет обосновано соответствующими расчетами, согласованными со специализированными научно-исследовательскими организациями, с учетом местных температурных напряжений на внутренней и наружной поверхности.

3.2.1.6. Для коллекторов, изготовляемых из одной или нескольких бесшовных труб, на концах прямых участков, растачиваемых под стыковую сварку, допускается утонение стенки до минимальной расчетной толщины стенки прямой трубы, определяемой по формуле

.

Расстояние между выходом расточки (обточки) под сварку и кромкой ближайшего отверстия по продольной оси коллектора должно быть не менее . Если это условие не соблюдается (но выполняются требования Правил госгортехнадзора по расположению отверстий), то вместо s0 следует принять sR. Коэффициент прочности jd в этом случае допускается определять согласно п.4.3.3.10, где полная площадь должна приниматься на длине, равной расстоянию между центрами отверстий при двух отверстиях с расположением сварного соединения между ними, или на длине, равной  от оси отверстия по направлению к оси сварного шва при расположении вблизи сварного соединения одного отверстия.

 

3.2.2. Допустимое давление

 

3.2.2.1. Допустимое рабочее давление в барабанах и коллекторах при контрольных расчетах должно быть не более значений, полученных по одной из следующих формул:

,

если расчет выполняется по наружному диаметру;

,

если расчет выполняется по внутреннему диаметру.

 

Примечания: 1. Коэффициент прочности j следует принимать в соответствии с п.3.2.1.2.

2. Значение прибавки c следует принимать в соответствии с п.3.2.1.4, при этом .

 

3.2.2.2. При выполнении контрольных расчетов по данным измерений толщины стенки вместо s - c следует применять sf - c2. Величина sf должна приниматься равной наименьшему значению из четырех измерений толщины по концам двух взаимно перпендикулярных диаметров в одном сечении при числе проверяемых сечений не менее одного на каждые два метра длины барабана (коллектора), но не менее чем в трех сечениях для всего барабана (коллектора).

3.2.2.3. Величина пробного давления при гидравлическом испытании не должна превышать значения, полученного согласно пп.3.2.2.1 и 3.2.2.2 при замене допускаемого напряжения [s] на [s]h.

3.2.2.4. Величина допускаемого рабочего или пробного давления в барабане или коллекторе не должна превышать соответственно рабочего или пробного давления, допускаемого по условиям прочности для остальных деталей данного барабана или коллектора, в частности для днищ.

 

3.2.3. Приведенное напряжение

 

3.2.3.1. Приведенное напряжение в барабанах и коллекторах должно определяться по одной из следующих формул:

,

если расчет выполняется по наружному диаметру;

,

если расчет выполняется по внутреннему диаметру.

При выполнении контрольных расчетов по данным измерений толщины стенки вместо s - c следует применять sf - c2 согласно п.3.2.2.2.

Значения коэффициентов прочности j и прибавки c следует принимать согласно пп.3.2.1.2 и 3.2.1.4 соответственно.

 

3.2.4. Расчетная температура стенки

 

3.2.4.1. Расчетную температуру стенки барабанов и охлаждающих топку слоевого сжигания панелей из углеродистой или теплоустойчивой стали, содержащих воду, пароводяную смесь или насыщенный пар, допускается определять без теплотехнических расчетов по упрощенным формулам для средней температуры стенки:

для барабанов, вынесенных из газохода, надежно изолированных или защищенных другим надежным способом от обогрева извне:

t = tm;

для неизолированных барабанов, расположенных в конвективных газоходах:

при температуре газов не выше 600 °С

t = tm + 1,2s + 10 °С;

при температуре газов более 600 °С, но не выше 900 °С

t = tm + 2,5s + 20 °С;

для неизолированных барабанов и охлаждающих панелей, подверженных лучеиспусканию факела или горящего слоя топлива:

t = tm + 4s + 30 °С.

3.2.4.2. Расчетную температуру стенки коллекторов экранов, экономайзеров и перегревателей допускается определять по упрощенным формулам:

для необогреваемых (вынесенных из газохода или надежно изолированных) коллекторов экономайзеров и экранов и коллекторов насыщенного пара котлов с естественной и принудительной циркуляцией, а также входных коллекторов экономайзеров прямоточных котлов

t = tm;

для необогреваемых коллекторов (за исключением входных) экономайзеров прямоточных котлов и коллекторов перегревателей (кроме насыщенного пара) котлов всех типов    

t = tm + xDt;

для обогреваемых коллекторов из углеродистой и теплоустойчивой стали, содержащих воду, пароводяную смесь или насыщенный пар:

при температуре в газоходе не выше 600 °С

t = tm + s + xDt + 10 °C;

при температуре в газоходе от 600 до 900 °С

t = tm + 2s + xDt + 20 °C;

при температуре в газоходе выше 900 °С

t = tm + 3s + xDt + 30 °C.

Величина t не должна приниматься выше расчетной температуры газов в сечении газохода, в котором расположен коллектор.

Температуру среды tm при определении расчетной температуры стенки для коллекторов экономайзеров (кроме входных), экранов котлов с естественной и принудительной циркуляцией и коллекторов насыщенного пара следует принимать равной температуре насыщенного пара при расчетном давлении в данном коллекторе. Для входных коллекторов экономайзеров котлов с естественной и принудительной циркуляцией температура среды должна приниматься равной температуре воды на входе в экономайзер (с учетом подогрева в пароохладителе в случае возврата воды после пароохладителя на вход в экономайзер и смешения при рециркуляции воды). Для коллекторов экономайзеров и переходных зон прямоточных котлов, а также для коллекторов перегревателей котлов всех типов она должна приниматься равной температуре среды.

Величина разверки температур во включенном в коллектор пучке Dt должна приниматься по тепловому расчету или по данным испытаний, но не менее 10 °С. Коэффициент x, учитывающий перемешивание среды до входа в коллектор или в нем, должен приниматься равным 0,5, за исключением случаев, когда среда подводится к торцу коллектора; в этих случаях допускается принимать x = 0.

3.2.4.3. Для обогреваемых коллекторов из аустенитной стали расчетная температура стенки должна приниматься средней из значений температур на внутренней и наружной поверхностях.

 

3.2.5. Требования к конструкции

 

3.2.5.1. Барабаны и коллекторы, имеющие отверстия, должны удовлетворять соответствующим требованиям к конструкции, изложенным в разделе 4.

3.2.5.2. В барабанах, изготовленных из листов стали разной толщины, средние линии обечаек должны совпадать.

Допускается совмещать обечайки по внутреннему диаметру, если выполняется условие п.3.2.1.3.

 

3.3. Трубы поверхностей нагрева и трубопроводов

 

3.3.1. Расчет толщины стенки прямых труб

 

3.3.1.1. Номинальная толщина стенки прямой трубы поверхности нагрева или трубопровода должна быть не менее определенной по формуле

s = sR + c,

где .

Формула пригодна при соблюдении условия (s - c)/Da £ 0,25.

Коэффициент прочности продольного или спирального сварного соединения jw должен приниматься в соответствии с разделом 4. Для бесшовных труб коэффициент прочности               jw = 1,0. Коэффициент прочности поперечных сварных соединений в расчете на внутреннее давление учитывать не следует.

3.3.1.2. Величина прибавки c должна приниматься в соответствии с п.3.2.1.4.

3.3.1.3. Номинальная толщина стенки труб при изготовлении и фактическая толщина стенки труб при эксплуатации должны быть не менее значений, указанных в табл.3.3, но не менее значений, полученных в результате расчетов на прочность.

 

Таблица 3.3

 

s, мм

Da, мм

 

< 38

£ 51

£ 70

£ 90

£ 108

> 108

При изготовлении

1,80

2,00

2,50

3,00

3,50

4,00

При эксплуатации

1,45

1,60

2,00

2,40

2,80

3,20

 

Номинальная толщина стенок труб, обогреваемых газами с температурой выше 900 °С, должна быть не более 8 мм, а при непосредственном воздействии лучистого тепла топки - не более 6,5 мм.

Допускается применение обогреваемых труб с большей толщиной стенки, если это будет обосновано соответствующими расчетами, согласованными со специализированными научно-исследовательскими организациями, с учетом местных температурных напряжений на внутренней и наружной поверхности.

3.3.1.4. На концах прямых участков бесшовных труб, растачиваемых под стыковую сварку, допускается утонение стенки до минимальной расчетной толщины прямой трубы, определяемой по формуле

.

Допускается уменьшение толщины стенки в месте расточки прямых труб под сварку до 0,95s0 при условии, что суммарная длина расточенного участка по продольной оси трубы после сварки не будет превышать меньшую из величин: 5s или 0,5Da.

 

3.3.2. Расчет толщины стенки колен и змеевиков

 

3.3.2.1. Расчетная толщина стенки на внешней, внутренней и нейтральной сторонах (участках) колена и змеевика должна быть не менее определенной по формуле

 (i = 1, 2, 3).

Расчетная толщина стенки прямой трубы sR должна определяться согласно п.3.3.1.1. Для участка колена, где продольный сварной шов отсутствует, коэффициент прочности сварного шва jw = 1,0.

Расчеты на прочность колен по приведенной ниже методике являются обязательными при учете изменения направления от прямолинейного более чем на 15°.

3.3.2.2. Торовый коэффициент для внешней, внутренней и нейтральной сторон колена должен определяться соответственно по формулам:

; ; K3 = 1.

Нейтральная сторона колена составляет участок колена, расположенный под углом 15° в оба направления от продольного среднего сечения колена.

3.3.2.3. Для колен из углеродистой, легированной и аустенитной сталей, температура стенки которых не превышает 350, 400, 450 °С соответственно, значения коэффициентов формы следует определять по формулам:

; Y2 = Y1; ,

где ;

       .

3.3.2.4. Для колен из углеродистой, легированной и аустенитной сталей, температура которых выше 400, 450, 525 °С соответственно, значения коэффициентов формы следует определять по формулам:

; Y2 = Y1;

Значения a и q должны приниматься согласно п.3.3.2.3 с учетом п.3.3.2.6.

3.3.2.5. Для колен, расчетная температура которых более указанной в п.3.3.2.3, но менее указанной в п.3.3.2.4, коэффициенты Y1, Y2, Y3 должны определяться линейным интерполированием в зависимости от значения температуры. При этом в качестве опорных величин должны приниматься значения коэффициентов, соответствующие указанным граничным температурам.

3.3.2.6. При выполнении расчетов по формулам, приведенным в пп.3.3.2.3 и 3.3.2.4, должны выполняться следующие условия:

если значения коэффициентов Yi (i = 1, 2, 3) получаются по расчету менее единицы, то следует принимать Yi = 1;

если вычисленное значение q превышает единицу, то следует принимать q = 1;

при a < 0,03 значения коэффициентов формы Yi и поправочного коэффициента q следует принимать равными их значению при a = 0,03;

допускается принимать Yi = 1 для труб поверхностей нагрева, если Da £ 76 мм и a £ 10%; если в указанном случае Da £ 51 мм, то допускается принимать Yi = 0,95.

3.3.2.7. Номинальную толщину стенки колена следует принимать наибольшей из значений, полученных для указанных трех участков колена, согласно условию si ³ sRi + c (i = 1, 2, 3).

Значение расчетной толщины стенки sRi следует принимать по пп.3.3.2.1-3.3.2.6.

Для секторных колен, изготовленных из бесшовных труб, номинальную толщину стенки следует выбирать по внутренней стороне колена, где s ³ sR2 + c.

Если секторное колено изготовляется из сварных труб и коэффициент прочности сварного шва jw < 1, то следует проверить значение номинальной толщины стенки по участку расположения сварного шва.

3.3.2.8. Значение прибавки  следует определять согласно п.3.3.1.2, а прибавку c12 для каждой из указанных в п.3.3.2.2 трех сторон следует принимать по техническим условиям (ТУ) на изделие, согласованным со специализированными научно-исследовательскими организациями.

В случае отсутствия в ТУ на изготовление колен данных по технологическому утонению стенки колен при определении прибавки c12 для колен, изготовляемых указанными широко известными способами, необходимо учесть следующее:

для гибов из труб, изготовляемых на трубогибочном оборудовании методом наматывания на сектор, прибавка c12 к sR1 должна быть не менее определенной по формулам:

для необогреваемых труб

;

для труб поверхностей нагрева

;

для штампованных колен, изготовляемых в закрытых штампах, или для гибов, изготовляемых на станках с нагревом токами высокой частоты и осевым поджатием, прибавка с12 к sR1 должна приниматься в пределах от 0,05s до 0,1s; в этих двух случаях (для гибов из труб, изготовляемых на трубогибочном оборудовании методом наматывания на сектор, и для штампованных колен) прибавка c12 к sR3 равна нулю, а расчет по внутренней стороне гиба не производится;

для колен, изготовляемых на рогообразном сердечнике, прибавка c12 равна нулю;

для секторных колен прибавка c12 равна нулю;

для штампосварных колен с расположением двух продольных сварных швов по внутренней и внешней стороне колена прибавка c12 к sR2 должна приниматься в пределах от 0,05s до 0,1s с учетом jw, если его значение менее единицы;

для штампосварных колен с расположением поперечного сварного шва в середине длины колена прибавка c12 к sR3 равна нулю, а прибавка c12 к sR1 должна приниматься в пределах от 0,05s до 0,1s; в этом случае расчет по внутренней стороне колена не производится, так как на этой стороне колено имеет утолщение стенки более значительное, чем величина коэффициента K2.

Если определение прибавки c12 производится, когда окончательно не выбрана номинальная толщина стенки колена, то следует задаться ее значением, например, равным значению номинальной толщины стенки прямой трубы согласно пп.3.3.1.1-3.3.1.3, с последующей проверкой по окончательно выбранному значению номинальной толщины стенки колена.

3.3.2.9. Допустимая толщина стенки [s] должна быть не менее определенной по формулам:

для колен [s] = sRi + c2,

для прямых труб [s] = sR + c2.

При определении [s] в условиях эксплуатации значение прибавки c2, определяемое согласно разделу 1, допускается уменьшить пропорционально планируемому ресурсу эксплуатации до замены детали или до очередного контроля толщины стенки.

Для тонкостенных колен паропроводов, трубопроводов и наружных перепускных труб диаметром более 200 мм при a £ 0,03 прибавку c2 следует принимать в пределах от 1 до 3 мм в зависимости от опыта эксплуатации. Применение прибавки менее 3 мм для труб наружным диаметром 500 мм и более должно быть согласовано со специализированными научно-исследовательскими организациями.

 

3.3.3. Допустимое давление

 

3.3.3.1. Допустимое рабочее давление в коленах труб котлов и в прямых трубах трубопроводов следует определять по формуле

.

При выполнении контрольных расчетов по данным измерений толщины стенки вместо s - c следует применять sf - c2.

Коэффициент прочности jw следует принимать согласно разделу 1.

Коэффициенты Ki и Yi следует определять согласно пп.3.3.2.2-3.3.2.6.

Расчет по приведенным формулам следует производить для всех характерных участков колена (i = 1, 2, 3). Значение прибавки c следует принимать согласно пп.3.2.1.4 и 3.3.2.8. При этом прибавка c1 должна определяться по номинальной толщине стенки.

В качестве допустимого давления должно приниматься минимальное из вычисленных значений. Для прямых труб Ki = Yi = 1.

3.3.3.2. При выполнении контрольных расчетов фактическая толщина стенки для прямых труб должна определяться согласно п.3.2.2.2; для колен следует выявить наименьшее значение толщины стенки в каждом характерном участке колена, т.е. на внешней, внутренней стороне и по нейтральной линии. Измерения следует производить не менее чем в трех поперечных сечениях колена, одно из которых должно делить колено на две равные части; на каждом из участков следует производить измерения не менее чем в четырех точках.

3.3.3.3. Величина пробного давления при гидравлическом испытании колен и прямых труб котлов и трубопроводов не должна превышать значения, полученного согласно п.3.3.3.1 при замене допускаемого напряжения [s] на [s]h.

3.3.3.4. Величина допустимого рабочего или пробного давления в трубе или трубопроводе должна приниматься равной минимальному значению соответственно рабочего и пробного давления, полученного для прямого участка трубы или рассматриваемых участков каждого из имеющихся колен.

 

3.3.4. Расчетная температура стенки

 

3.3.4.1. Расчетная температура стенки труб поверхностей нагрева котлов всех систем должна определяться по нормативным методам теплового и гидравлического расчетов котлов. При этом должны быть рассмотрены различные участки пакета, имеющие как наивысшую температуру пара, так и наибольшую тепловую нагрузку, а также участки, конструктивные особенности которых могут обусловить наиболее высокую температуру стенки. При установке за пакетом, для которого определяется температура стенки, пароохладителя следует ввести прибавку к расчетной температуре среды, учитывающую возможное повышение фактического тепловосприятия пакета над расчетным. Величина прибавки должна выбираться конструкторской организацией в пределах от 0 до 10 °С.

3.3.4.2. Допускается определение расчетной температуры стенки труб поверхностей нагрева по упрощенным формулам:

для вертикальных и слабонаклонных (до 30° от вертикали) котельных труб котлов с естественной и принудительной циркуляцией при рабочем давлении не более 16 МПа и при максимальных удельных тепловосприятиях поверхности нагрева по наружной поверхности труб qmax < 407 кВт/м2 (350·103 ккал/(м2·ч))

t = tm + 60 °С;

для труб конвективных перегревателей котлов с рабочим давлением не более 2,5 МПа и температурой пара не выше 425 °С при максимальных удельных значениях тепловосприятия qmax £ 70 кВт/м2 (60·103 ккал/м2·ч))

t = tm + 70 °С;

для труб участков первичных перегревателей, расположенных в зоне температур газов менее 650 °С, независимо от рабочего давления котлов (если коэффициент гидравлической разверки не менее 0,95)

t = tm + 50 °С;

для экономайзеров некипящего типа котлов с естественной и принудительной циркуляцией

t = tm + 30 °С;

для конвективных экономайзеров прямоточных котлов

t = tm + 40 °С.

Температуру среды следует принимать равной определенной из теплового расчета температуре на выходе из пакета при номинальной производительности котла.

3.3.4.3. Для необогреваемых труб расчетную температуру стенки следует принимать равной температуре среды на входе в трубу.

Для необогреваемых параллельно включенных труб (количество труб две и более) учитываемую разверку температур на входе следует принимать так же, как для коллекторов (см. п.3.2.4.2).

3.3.4.4. Расчетную температуру стенки труб поверхностей нагрева пароводяных теплообменников (пароохладителей и др.) следует принимать:

для охладителей, расположенных в коллекторах насыщенного пара, равной температуре насыщения;

для охладителей, размещенных в коллекторах перегретого пара, равной температуре перегретого пара в данном коллекторе;

для охладителей, расположенных в водяном пространстве барабана котла, а также для теплообменников двухконтурных котлов равной температуре более горячей среды, определенной по тепловому расчету.

3.3.4.5. Расчетную температуру стенки труб поверхностей нагрева пароводяных и газопаровых теплообменников следует определять по общей методике теплового расчета.

 

3.3.5. Приведенное напряжение

 

3.5.1. Приведенное напряжение от действия внутреннего давления в коленах труб и в прямых трубах котлов и трубопроводов следует определять по одной из следующих формул:

по номинальной толщине стенки

;

по фактической толщине стенки

.

 

Для колен следует принимать наибольшее из полученных трех значений s.

Значения величин jw, Ki, Yi и c следует принимать согласно п.3.3.3.1.

 

3.3.6. Требования к конструкции

 

3.3.6.1. Трубопроводы, имеющие неукрепленные и (или) укрепленные отверстия (тройниковые соединения и т.п.), должны удовлетворять соответствующим требованиям к конструкции, изложенным в разделе 4.

 

3.3.7. Дополнительные напряжения

 

3.3.7.1. Дополнительные напряжения от действия внешних нагрузок (осевой силы, изгибающих и крутящих моментов) и самокомпенсаций теплового расширения должны определяться и ограничиваться в соответствии с п.5.1.

 

3.3.8. Поверочный расчет на усталость

 

3.3.8.1. Поверочный расчет на малоцикловую усталость следует производить согласно п.5.1.5.

 

3.4. Конические переходы

 

3.4.1. Расчет толщины стенки

 

3.4.1.1. Номинальная толщина стенки конического перехода должна быть не менее определенной по одной из следующих формул:

для бесшовных (точеных, штампованных, обсаженных из труб, кованых и др.) конических переходов

;

для конических переходов с продольным сварным швом

,

где D - внутренний диаметр большего основания конического перехода, мм;

a - угол конусности, равный половине угла у вершины конического перехода, град              (рис. 3.1).

Формулы пригодны при соблюдении следующих условий:

для a £ 15°

;

для 15° < a £ 45°

 и ,

где D0 - внутренний диаметр меньшего основания конического перехода, мм.

 

 

Рис.3.1. Схема конического переходного участка

 

3.4.1.2. Коэффициент прочности jw продольного сварного соединения должен приниматься согласно разделу 4.

3.4.1.3. Величина прибавки c должна определяться согласно п.3.2.1.4. Производственная прибавка с1 должна приниматься равной:

для бесшовных конических переходов - значению, установленному соответствующими техническими условиями для принятой технологии изготовления конических переходов;

для конических переходов с продольным сварным швом, изготовленных из листа, - наибольшему минусовому отклонению по толщине листа.

3.4.1.4. Расчеты по приведенной методике применимы для кососимметричных конических переходов, у которых углы наклона образующей к диаметральной оси симметрии в различных плоскостях различны (в том числе один из них может быть равен нулю).

В расчетных формулах следует использовать наибольшее значение угла конусности.

 

3.4.2. Допустимое давление

 

3.4.2.1. Допустимое рабочее давление при контрольных расчетах изготовленных конических переходов должно определяться по следующей формуле:

.

Для бесшовных переходов jw = 1.

Значение прибавки c должно приниматься согласно п.3.4.1.3.

3.4.2.2. Величина пробного давления при гидравлическом испытании не должна превышать значения, полученного согласно п.3.4.2.1 при замене допускаемого напряжения [s] на [s]h.

3.4.2.3. Величина принятого рабочего или пробного давления в трубопроводе не должна превышать наименьшего допустимого значения для каждой из деталей трубопровода, в частности для конических переходов.

 

3.4.3. Приведенное напряжение

 

3.4.3.1. Приведенное напряжение от внутреннего давления в коническом переходе должно определяться по следующей формуле:

.

Значение коэффициента прочности jw должно приниматься согласно п.3.4.1.2.

 

3.4.4. Расчетная температура стенки

 

3.4.4.1. Расчетная температура стенки конического перехода должна приниматься равной наибольшей расчетной температуре стенки прямой трубы, к которой переход приваривается.

 

3.4.5. Требования к конструкции

 

3.4.5.1. При угле конусности a ³ 15° по концам конического перехода, приваренным к трубопроводу 1-й категории, рекомендуется обеспечить цилиндрические участки длиной не менее двукратной толщины стенки перехода.

3.4.5.2. Сопряжения конической и цилиндрической частей по внутренней и наружной поверхностям конического перехода, выполняемые механической обработкой, должны быть плавными (по радиусу не менее 3 мм), за исключением переходов от конической к меньшей цилиндрической части по внутренней поверхности и от конической к большей цилиндрической части по наружной поверхности.

 

3.4.6. Поверочный расчет на усталость

 

3.4.6.1. Поверочный расчет на малоцикловую усталость следует производить согласно п.5.1.5.

 

3.5. Выпуклые днища

 

3.5.1. Расчет толщины стенки эллиптического и полусферического днища

 

        

Рис.3.2. Выпуклые днища:

 

 - глухое эллиптическое днище; б - глухое полусферическое днище;

в - эллиптическое днище с лазовым отверстием

 

3.5.1.1. Номинальная толщина стенки днищ эллиптической или полусферической формы в соответствии с рис. 3.2 должна быть не менее определенной по формуле

s = sR + c,

где при расчете по внутреннему диаметру

,

при расчете по наружному диаметру

.

Формулы пригодны при соблюдении следующих условий:

0,5 ³ h/D ³ 0,2;   0,5 ³ ha/Da ³ 0,2;   0,1 ³ (s-c)/D ³ 0,0025.

3.5.1.2. Коэффициент прочности j должен определяться согласно разделу 4.

3.5.1.3. Значение прибавки c должно определяться согласно п.3.2.1.4.

Технологическая прибавка c12, компенсирующая утонение листа при штамповке выпуклого днища, должна приниматься по данным НТД на изготовление днища.

Если номинальная толщина листа неизвестна, то для предварительной оценки прибивку c12 допускается определять по формуле

.

Если номинальная толщина листа известна или предварительно принята, то прибавка c12 должна определяться по формуле

,

где D12 - утонение выпуклого днища при штамповке, принимаемое по НТД на изделие.

Допускается не учитывать утонение днища, если оно не превышает 5% номинальной толщины листа. Если утонение больше 5%, то при определении прибавки c12 учитывается разность между утонением D12 и утонением D, равным 5% номинальной толщины листа.

Соответственно формулы для определения прибавки c12 имеют вид:

,

если номинальная толщина листа неизвестна, и

,

если номинальная толщина листа известна или предварительно принята.

При расчетах максимальное утонение следует учитывать в средней части выпуклого днища (независимо от его формы) на площади, определяемой по внутренней поверхности величиной  от кромки лазового отверстия или от центральной точки глухого днища, а также на участке перехода от цилиндрической части к выпуклой для эллиптических и торосферических днищ. Участок перехода должен рассматриваться по внутренней поверхности днища на длине не менее определяемой по формуле

l = 0,55pr,

где r = 0,095D для днищ эллиптической и торосферической формы.

Допускается участок перехода рассматривать по наружной поверхности выпуклого днища. В этом случае формула имеет вид

la = 0,55pra ,

где ra = r + s (или ra = r + sf).

Если по принятой технологии изготовления днища возможна потеря на окалину, то ее следует учесть при выборе толщины листа при толщине окалины более 0,5 мм.

3.5.1.4. Номинальная толщина стенки днища должна приниматься не менее номинальной толщины стенки цилиндрического борта, определенной по расчетной толщине при j = 1.

Номинальная толщина стенки днища должна быть не менее 6 мм.

Для днищ с внутренним диаметром менее 500 мм допускается толщина стенки не менее 3 мм.

3.5.1.5. Днища с переменной толщиной стенки из углеродистой стали (рис.3.3.) должны рассчитываться согласно п.3.5.1.1, при этом расчетная толщина стенки должна приниматься равной среднеарифметическому значению из наименьшей и наибольшей толщины:                          s = 0,5(s1 + s2).

Формула применима при s2 > s1, при этом s2 < 2s1.

 

 

Рис.3.3. Лазовое отверстие в выпуклом днище переменной толщины

 

При наличии в днище подреза для уплотнения лазового затвора остающаяся в месте подреза толщина стенки s3 должна быть не менее s.

3.5.1.6. Для днищ с постоянной толщиной стенки минимальная толщина стенки в месте подреза для уплотнения лазового затвора s3 (см. рис.3.3) должна быть не менее расчетной толщины стенки днища, определенной согласно п.3.5.1.1, при j = 1.

Для днищ с постоянной и переменной толщиной стенки указанное значение толщины стенки s3 допускается уменьшить, если это подтверждено поверочным расчетом на прочность с обоснованием ресурса эксплуатации.

 

3.5.2.Расчет толщины стенки торосферического днища

 

3.5.2.1. Толщина стенки торосферического днища выполняется по формулам для эллиптических днищ настоящих Норм.

Допускается расчет на прочность торосферического днища производить по формулам ГОСТ 14249.

3.5.2.2. Коэффициент прочности днища j должен определяться согласно разделу 4.

3.5.2.3. Величина прибавки днища c должна определяться согласно п.3.2.1.4.

 

3.5.3. Допустимое давление

 

3.5.3.1. Допустимое рабочее давление при контрольных расчетах изготовленных эллиптических, полусферических и торосферических днищ должно быть не менее определенного по формулам:

,

если номинальным является внутренний диаметр,

,

если номинальным является наружный диаметр.

Значение коэффициента прочности j и значение прибавки c должны определяться согласно пп.3.5.1.2 и 3.5.1.3.

3.5.3.2. Допустимое рабочее давление для торосферических днищ может определяться согласно ГОСТ 14249.

3.5.3.3. Величина пробного давления при гидравлическом испытании не должна превышать значения, полученного согласно пп.3.5.3.1. и 3.5.3.2 при замене в расчетных формулах допускаемого напряжения [s] на [s]h.

 

3.5.4. Приведенное напряжение от внутреннего давления

 

3.5.4.1. Приведенное напряжение от внутреннего давления эллиптических, полусферических и торосферических днищ должно определяться по формулам:

,

если номинальным является внутренний диаметр,

,

если номинальным является наружный диаметр.

Значения коэффициента прочности  и величины прибавки  должны определяться согласно пп.3.5.1.2 и 3.5.1.3.

 

3.5.5. Расчетная температура стенки

 

3.5.5.1. Расчетная температура стенки необогреваемого днища должна приниматься равной температуре стенки детали, к которой днище приваривается.

3.5.5.2. Для обогреваемого днища температура стенки должна приниматься согласно пп.3.2.4.1 и 3.2.4.2, но не должна быть менее температуры стенки детали, к которой днище приваривается.

 

3.5.6. Требование к конструкции

 

3.5.6.1. Наибольший диаметр отверстия в выпуклых днищах должен удовлетворять условию d/D £ 0,61, если номинальным является внутренний диаметр днища, и условию d/D £ 0,6, если номинальным является наружный диаметр.

3.5.6.2. Для выпуклых днищ толщина стенки цилиндрического борта должна быть не менее расчетной толщины стенки обечайки, рассчитанной в соответствии с пп.3.2.1.1 или 3.3.2.1 при        j = 1.

Если длина цилиндрической отбортованной части днища удовлетворяет условию:  - для эллиптического и торосферического днища или условию  - для полусферического днища, то толщина цилиндрического борта должна быть не менее толщины стенки обечайки, рассчитанной в соответствии с пп.3.2.1.1 или 3.3.1.1 при j = 1.

Если длина цилиндрического борта равна указанным величинам или менее их, то допускается толщина стенки цилиндрического борта, принятая согласно пп.3.5.1 и 3.5.2.

3.5.6.3. Допускается применение полусферических днищ без цилиндрического борта, т.е. при l = 0.

 

3.6. Плоские крышки и днища

 

3.6.1. Расчет толщины круглых плоских днищ

 

3.6.1.1. Номинальная толщина круглого днища должна быть не менее определенной по формуле

s1 = s1R + c,

где .

Для днищ с отбортованной цилиндрической частью, которые соответствуют рис.3.4,е, вместо D в формулу следует подставлять величину (D - r).

Коэффициент K следует принимать равным:

для днищ, конструкция которых дана на рис.3.4,, при  K = 0,42K1, но не менее 0,35;

для днищ той же конструкции, но при , а также для днищ конструкции, данной на рис.3.4, б, в, K = 0,45K1, но не менее 0,35;

для днищ, конструкция которых дана на рис.3.4, г, при полном проваре толщины днища односторонним швом K = 0,55K1 и двусторонним швом K = 0,45K1;

для днищ, конструкция которых дана на рис.3.4, д, K = 0,53;

для днищ, конструкция которых дана на рис.3.4, е, K = 0,35.

 

 

Рис.3.4. Типы плоских днищ

 

Коэффициент K1 следует определять по формуле

,

где [s]z - номинальное допускаемое напряжение для металла цилиндрической детали, МПа.

Допускается коэффициент K1 определять по номограмме (рис.3.5), если [s]z = [s].

 

 

Рис.3.5. Номограмма для определения коэффициента K1 при расчете круглых плоских днищ

 

Значение коэффициента K1 должно быть не менее 0,76.

При отрицательном значении подкоренного выражения следует принять K1 = 0,76.

Минимальная толщина стенки s0 должна определяться по формуле

.

Толщина стенки цилиндрической детали в месте присоединения плоского днища или цилиндрической части плоского днища должна быть не менее s0.

Коэффициент K0 следует принимать равным следующим значениям:

для днища без отверстия K0 = 1,0;

для днищ с отверстием

;

для днища с двумя и более отверстиями

.

Величина Sdi должна приниматься как максимальная сумма диаметров отверстий или их хорд в наиболее ослабленном диаметральном сечении днища (рис.3.6):

Прибавка c должна приниматься согласно разделу 1.

3.6.1.2. Для днищ, сваренных из двух частей, коэффициент прочности сварного соединения jw следует определять согласно разделу 4.

3.6.1.3. Толщина плоского днища должна быть не менее толщин стенки цилиндрической части, определенной согласно п.3.3.1.1.

3.6.1.4. Для днищ, конструкция которых изображена на рис.3.4, б и в, толщина днища в месте кольцевой выточки должна удовлетворять условию

.

Указания по выбору величины r приведены на рис.3.4, б.

 

 

Рис.3.6. Выбор максимальной суммы диаметров отверстий и их хорд

в диаметральном сечении днища

 

3.6.2. Расчет толщины круглых плоских крышек

 

3.6.2.1. Номинальная толщина круглой крышки должна быть не менее определенной по формуле

s1 = s1R + c,

где .

Для крышек, конструкция которых соответствует рис.3.7, расчетный диаметр Dk и коэффициент Km следует принимать согласно табл.3.4.

Прибавка c должна приниматься согласно разделу 1.

3.6.2.2. Толщина крышки по кольцевому участку действия усилия от болтов должна удовлетворять условию

s3 ³ 0,7s1.

 

 

Рис.3.7. Круглые плоские крышки (заглушки)

 

 

Таблица 3.4

 

Тип конструкции крышки по рис.3.7

Dk

Km

3.7,

Du

0,5Db/Du

3.7, б

Du

0,41

3.7, в

Du

0,53

3.7, г

Du

1,25

3.7, д

Db

0,41

 

3.6.2.3. Конструкция крышки, показанная на рис.3.7, г, при Du > 500 мм к применению не рекомендуется.

3.6.2.4. Для крышек, конструкция которых соответствует рис.3.7, д, усилие затяга болтов не должно превышать двукратного усилия от внутреннего давления.

 

3.6.3. Расчет толщины овальных и прямоугольных крышек

 

3.6.3.1. Номинальная толщина овальной или прямоугольной крышки (рис.3.8) должна быть не менее определенной по формуле

s1 = s1R + c,

где .

 

 

Рис.3.8. Овальная (прямоугольная) плоская крышка

 

 

Коэффициент Km следует принимать согласно п.3.6.2.1.

Коэффициент Y следует определять по формуле

.

Прибавка c должна приниматься согласно разделу 1.

3.6.3.2. Для овальных и прямоугольных крышек должны выполняться условия пп.3.6.2.2-3.6.2.4, при этом в п.3.6.2.3 вместо среднего диаметра прокладки Du следует принимать n + b, где b - ширина прокладки.

 

3.6.4. Допустимое давление

 

3.6.4.1. Допустимое рабочее давление изготовленных днищ и крышек при контрольных расчетах следует определять по одной из следующих формул:

для круглых днищ

;

для круглых крышек

;

для овальных и прямоугольных крышек

.

При выполнении контрольных расчетов по данным измерений толщины стенки вместо s1 - c следует применять s1f - c2.

3.6.4.2. Величина пробного давления при гидравлическом испытании не должна превышать значения, полученного согласно п.3.6.4.1 при замене [s] на [s]h.

3.6.4.3. Величина принятого рабочего или пробного давления в расчетном элементе (например, коллекторе) не должна превышать наименьшего допустимого значения для плоских днищ, крышек и цилиндрической части расчетного элемента.

 

3.6.5. Расчетная температура стенки

 

3.6.5.1. Расчетная температура стенки плоского днища или крышки должна приниматься так же, как для выпуклых днищ, согласно п.3.5.5.

 

3.6.6. Требования к конструкции

 

3.6.6.1. Радиусы закругления, глубина выточки, сечение сварных швов и другие величины для круглых плоских днищ должны удовлетворять требованиям, указанным на рис.3.4.

3.6.6.2. Расстояние между кромками соседних отверстий в плоском днище должно быть не менее полусуммы диаметров этих отверстий; расстояние от кромки отверстия до внутренней поверхности цилиндрической части днища должно быть не менее 2r для днищ конструкции по рис.3.4, е, 3r - для днищ конструкции по рис.3.4, б и 0,1D для остальных конструкций днищ.

3.6.6.3. Применение круглых плоских днищ из аустенитной стали допускается только при выполнении их по типу, изображенному на рис.3.4, a и б, с соблюдением условия .

3.6.6.4. Разделка кромок штуцера под сварку должна обеспечить соединение его с плоским днищем по всей толщине штуцера. Приварка штуцера односторонним угловым швом без разделки кромок допускается только при толщине стенки штуцера не более 10 мм; минимальное сечение сварного шва приварки штуцера к днищу должно быть не менее толщины стенки штуцера.

3.6.6.5. Толщину стенок днищ, к которым присоединяются трубы при помощи развальцовки, следует принимать не менее 13 мм.

3.6.6.6. Для днищ, конструкция которых соответствует рис.3.4, е, радиус закругления должен приниматься в соответствии с табл.3.5, но не менее .

 

Таблица 3.5

 

D, мм

r, мм, не менее

До 500

30

От 500 до 1400

35

От 1400 до 1600

40

От 1600 до 1900

45

Свыше 1900

50

 

4. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ПРОЧНОСТИ

 

4.1. Общие положения

 

4.1.1. Условные обозначения

 

4.1.1.1. В формулах приняты следующие обозначения, представленные в табл.4.1.

 

Таблица 4.1

 

Символ

Название

Единица измерения

1

2

3

Dm

Средний диаметр детали

мм

d

Диаметр отверстия

мм

d1

Диаметр гнезда под штуцер или крышку лючка в детали

мм

t, t1

Расстояние между центрами соседних отверстий в продольном (для выпуклых днищ в любом направлении) и поперечном направлениях, принимаемое по средней окружности

мм

h

Глубина гнезда под штуцер или крышку лючка

мм

lw

Расстояние от кромки отверстий до центра сварного шва

мм

j

Расчетный коэффициент прочности детали

 

jw

Коэффициент прочности сварных соединений при 0

 

jd

Коэффициент прочности деталей, ослабленных неукрепленными отверстиями

 

jc

Коэффициент прочности деталей, ослабленных отверстиями с учетом укрепления

 

j0d, j0c

Коэффициенты прочности одиночного неукрепленного и укрепленного отверстия соответственно

 

z

Коэффициент, определяющий отношение диаметра отверстия к зоне его влияния

 

Sf

Сумма компенсирующих площадей укрепляющих деталей

мм2

l

Протяженность зоны влияния отверстия по сечению расчетной детали, учитываемая в укреплении

мм

ls

Протяженность зоны влияния отверстия по сечению штуцера, учитываемая в укреплении

мм

jmin, jmax

Минимальный и максимальный коэффициенты прочности при разных расстояниях между отверстиями ряда

 

Da

Наружный диаметр расчетной детали

мм

D

Внутренний диаметр расчетной детали

мм

s

Номинальная толщина стенки

мм

sf

Фактическая толщина стенки

мм

c

Суммарная прибавка к толщине стенки

мм

c2

Эксплуатационная прибавка к толщине стенки

мм

[s]

Номинальное допускаемое напряжение

МПа

p

Расчетное давление

МПа

da

Наружный диаметр штуцера или трубы (ответвления)

мм

ds

Внутренний диаметр штуцера или трубы (ответвления)

мм

dy

Условный диаметр отверстия, используемый в расчетах при различных диаметрах расточки отверстия по толщине стенки

мм

de

Эквивалентный диаметр отверстия, используемый в расчетах при отбортованных кромках отверстия внутрь или наружу расчетной детали

мм

s0

Минимальная толщина стенки без учета прибавок и ослаблений отверстиями или сварными соединениями

мм

aw

Угол между направлением сварного шва и расчетным направлением, т.е. продольным направлением для цилиндрических деталей при расчете на внутреннее давление и поперечным направлением при расчете на осевое усилие (0 £ aw £ 90)

град

ad

Угол между расчетным (продольным) направлением и направлением между центрами рассматриваемых соседних отверстий (0 £ ad £ 90)

град

F0

Площадь металла между кромками отверстий

мм2

Ft

Полная площадь между центрами отверстий

мм2

 

4.1.1.2. В случае необходимости приведенные в п.4.1.1.1 обозначения следует дополнить индексами s, n и b, относящимися соответственно к штуцерам, накладкам и воротникам, а также к вытянутым горловинам.

4.1.1.3. Все значения используемых в расчетах величин следует принимать номинальными без учета допускаемых отклонений.

 

4.1.2. Средний диаметр цилиндрической детали или выпуклого днища

 

4.1.2.1. Если номинальным диаметром детали является наружный диаметр, то средний диаметр следует определять по формуле Dm = Da - s.

4.1.2.2. Если номинальным диаметром детали является внутренний диаметр, то средний диаметр следует определять по формуле Dm = Da + s.


4.1.3. Расчетный коэффициент прочности

 

4.1.3.1. Расчетный коэффициент прочности j представляет собой относительную величину, используемую в формулах для определения толщины стенки расчетной детали и учитывающую ослабление отверстиями и сварными соединениями.

4.1.3.2. Коэффициент прочности сварных соединений jw представляет собой отношение предельной нагрузки, действующей в направлении, перпендикулярном к направлению сварного соединения (т.е. при aw = 0), к предельной нагрузке бесшовной детали.

4.1.3.3. Коэффициент прочности сроили jd или jc, учитывающий отверстия, представляет собой отношение предельной нагрузки детали с отверстиями к предельной нагрузке детали без отверстий.

Указанное отношение нагрузок допускается заменять отношением среднего напряжения в детали без отверстий к среднему напряжению детали с отверстиями или отношением соответствующих площадей тех же самых сечений (см. п.4.3.3.10). При этом рассматриваются напряжения или сечения между отверстиями или по отверстию, перпендикулярные направлению действия расчетной нагрузки или приведенные к этому направлению.

4.1.3.4. Расчетный коэффициент прочности детали j принимается равным либо минимальному из значений коэффициентов прочности сварных соединений jw и отверстий jd, либо их произведению в зависимости от расстояния между кромкой ближайшего к сварному шву отверстия и центром сварного шва lw.

4.1.3.5. Если расстояние lw равно или менее 0,5, или менее 50 мм, или кромка отверстия пересекает (полностью или частично) сварной шов (рис.4.1), то расчетный коэффициент прочности следует определять по формуле

.

 

 

Рис.4.1: I - I - расчетное направление (для цилиндрической детали при расчете

на внутреннее давление - продольная ось); II - II - средняя линия сварного соединения;

III - III - направление расчетной нагрузки

 

В остальных случаях для расчетного коэффициента прочности должно выполняться условие

.

При наличии укрепленных отверстий в формулах следует принимать jc взамен jd.

4.1.3.6. Для бесшовных деталей расчетный коэффициент прочности j следует принимать равным коэффициенту прочности деталей, ослабленных отверстиями jd или jc.

4.1.3.7. Для деталей, не имеющих отверстий, или с одиночным отверстием, размеры которого должны удовлетворять условию , или с рядами полностью укрепленных отверстий (jc = 1), расчетный коэффициент прочности j следует принимать равным коэффициенту прочности сварного соединения .

4.1.3.8. Во всех случаях коэффициенты прочности j, jw, jc, а также  не должны приниматься более единицы.

Сварные соединения с коэффициентом прочности jw менее 0,5 не допускаются.

4.1.3.9. Линейным рядом отверстий (который для упрощения называется рядом отверстий) являются отверстия в количестве двух и более, расположенные в одном направлении (по одной линии) на поверхности детали. Отверстия, центры которых отстоят от указанного направления на 15° и менее, могут считаться входящими в ряд отверстий (рис.4.2).

 

 

Отверстие А в направлении слева направо входит в ряд отверстий, так как угол a < 15°,

и расчет допускается производить без учета угла как для продольного ряда.

Отверстие А в направлении справа налево не входит в продольный ряд отверстий,

так как угол g > 15°, и расчет производят как для косого ряда.

 

Рис.4.2

 

4.1.3.10. Рядом одиночных отверстий называется ряд отверстий, расстояния между кромками которых составляют не менее .

 

4.2. Коэффициенты прочности сварных соединений

 

4.2.1. Коэффициенты прочности стыковых соединений

 

4.2.1.1. Коэффициент прочности стыковых сварных соединений, выполненных любым допущенным способом (автоматической, полуавтоматической или ручной дуговой сваркой), обеспечивающим полный провар по всей длине стыкуемых элементов, при проведении контроля качества шва радиографией или ультразвуком по всей длине шва для продольного шва под давлением и поперечного шва при растяжении должен приниматься следующим:

для углеродистой, низколегированной марганцовистой, хромомолибденовой (в том числе 10СrМо910) и аустенитной сталей jw = 1,0;

для хромомолибденованадиевой и высокохромистой сталей при ресурсе до 2·105 ч:

при электрошлаковой сварке jw = 1,0;

при ручной дуговой сварке, контактной стыковой сварке, автоматической стыковой сварке под флюсом:

для расчетной температуры 510 °С и менее jw = 1,0;

для расчетной температуры 530 °С и более jw = 0,7;

при электронно-лучевой сварке:

для расчетной температуры 510 °С и менее jw = 1,0;

для расчетной температуры 530 °С и более jw = 0,9.

При расчетной температуре от 510 до 530 °С значение коэффициента прочности сварного соединения jw определяется линейным интерполированием между указанными значениями коэффициента прочности.

4.2.1.2. Коэффициент прочности стыкового сварного соединения, контроль качества которого УЗД или радиографией допускается производить не по всей длине каждого шва, следует принимать равным значению, приведенному в п.4.2.1.1 и умноженному на величину: 0,8 - при выборочном контроле не менее 10% длины данного шва; 0,7 - при отсутствии контроля или при выборочном контроле менее 10%.

4.2.1.3. При наличии смещения кромок сварных труб коэффициент прочности сварного соединения, определенный в соответствии с пп.4.2.1.1 и 4.2.1.2, должен быть уменьшен пропорционально смещению кромок, например, при смещении кромок на 15% значение коэффициента должно быть умножено на 0,85.

4.2.1.4. Если направление нагрузки совпадаете направлением сварного шва или отличается от него на угол не более 15° (90° - aw £ 15°), то коэффициент прочности сварного соединения при расчете на данную нагрузку не учитывается. Так, при расчете на внутреннее давление цилиндрических деталей не учитывается поперечный шов, а при расчете на осевое усилие не учитывается продольный шов.

4.2.1.5. Усиление сварного шва при определении коэффициента прочности не учитывается.

4.2.1.6. Если сварное соединение нагружено изгибающими нагрузками, то при определении изгибных напряжений, действующих в поперечном направлении сварного соединения, должны применяться коэффициенты прочности сварного соединения при изгибе jbw, значения которых для катаных и кованосверленых или центробежнолитых труб с механически обработанной внутренней поверхностью должны приниматься не более приведенных в табл.4.2.

 

Таблица 4.2

 

Значения коэффициента jbw

 

Сталь

Трубы

 

катаные

механически обработанные

Аустенитная хромоникелевая и высокохромистая

0,6

0,7

Хромомолибденованадиевая при расчетной температуре:

 

 

 

0,9

1,0

530 °С и более

0,6

0,7

Углеродистая, марганцовистая и хромомолибденовая

0,9

1,0

 

Примечание. При расчетной температуре от 510 до 530 °С коэффициент прочности сварного соединения при изгибе определяется линейным интерполированием между указанными значениями.

 

Если расчетная деталь изготовлена из листа, то значения коэффициентов прочности сварного соединения при изгибе допускается принимать по табл.4.2 как для механически обработанных труб.

При изготовлении деталей из полуфабрикатов с полем допусков толщины стенки более 10% коэффициенты прочности сварного соединения при изгибе следует принимать по табл.4.2 как для катаных труб.

4.2.1.7. Для хромомолибденованадиевых и высокохромистых сталей при расчетной температуре более 510 °С и ресурсе 3·105 ч значения коэффициентов прочности должны быть уменьшены на 0,1 и составят 0,6 и 0,8 вместо 0,7 и 0,9 согласно п.4.2.1.1 и 0,5 и 0,6 вместо 0,6 и 0,7 согласно п.4.2.1.6. Для ресурса от 2·105 до 3·105 ч значения коэффициентов прочности сварного соединения определяются линейным интерполированием между указанными значениями.

4.2.1.8. Для хромомолибденованадиевых и высокохромистых сталей при расчетной температуре более 510 °С и ресурсе 4·105 ч значения коэффициентов прочности должны быть уменьшены на 0,1 по сравнению со значениями, указанными при ресурсе 3·105 ч в п.4.2.1.7. Значения коэффициентов прочности могут уточняться по мере накопления экспериментальных данных.

 

4.2.2. Коэффициенты прочности угловых сварных соединений и соединений внахлестку

 

4.2.2.1. При расчете угловых и тавровых сварных соединений на все виды нагрузок (кроме сжатия) коэффициент прочности jw следует принимать не более 0,8 при контроле радиографией или УЗК по всей длине шва и не более 0,6 при выборочном контроле или при отсутствии контроля.

4.2.2.2. При расчете сварных соединений внахлестку на все виды нагрузок коэффициент прочности jw следует принимать не более 0,6.

 

4.3. Коэффициенты прочности, учитывающие наличие отверстий

 

4.3.1. Диаметр отверстия

 

4.3.1.1. При определении коэффициентов прочности jd или jc диаметр отверстия для каждого расчетного сечения следует принимать:

для отверстий, в которых трубы развальцованы или приварены к наружной поверхности детали без расточки гнезда или с углублением для установки штуцера менее 30% толщины стенки или с углублением 30% и более, но с обеспечением полного проплавления толщины стенки штуцера и заполнением гнезда наплавленным металлом, а также для лючковых отверстий - равными диаметру отверстия в соответствии с рис.4.3;

 

 

Рис.4.3. Типы соединения труб (штуцеров) с расчетной деталью:

a - отверстие с завальцованной трубой (штуцером); б - отверстие с приварным штуцером (трубой) без полного проплавления толщины стенки штуцера (конструктивный зазор);

в - отверстие с приварным штуцером (трубой) при полном проплавлении толщины

стенки штуцера; г - отверстие с приварным штуцером (трубой) при полном проплавлении толщины стенки расчетной детали

 

для отверстий, имеющих по толщине стенки расточки с несколькими разными диаметрами, например с тремя диаметрами согласно рис.4.4, - равными условному диаметру, определенному по формуле

,

где i = 1, 2, 3, ... ,n. В случае если штуцер устанавливается в гнезде с полным проплавлением на глубину не менее h3, расчет условного диаметра отверстия (dy) допускается производить по значениям двух расточек (d1, h1 и d2, h2);

 

 

Рис.4.4. Отверстие с различными диаметрами по толщине стенки

 

для овальных отверстий - равными размеру отверстия в направлении ряда, рассматриваемого при определении коэффициента прочности;

для соседних отверстий ряда, имеющих разные диаметры, - равными среднеарифметическому значению диаметров;

для цилиндрических деталей и выпуклых днищ с отбортованным внутрь или наружу воротником или с вытянутой горловиной - равными эквивалентному диаметру, определенному по формуле

,

где r - радиус закругления воротника или горловины по внутренней поверхности (по отношению к отверстию), мм (рис.4.5, 4.6); должно быть r ³ 5 мм;

для отверстий, имеющих резьбу, - равными среднему диаметру резьбы.

4.3.1.2. Снятие фасок или округление кромок с внутренней поверхности детали допускается не учитывать.

 

 

Рис.4.5. Вытянутая горловина

 

 

Рис.4.6. Отбортованный воротник

 

4.3.1.3. Если одиночное отверстие в барабане, коллекторе или коническом переходе имеет форму, отличающуюся от круговой с максимальным размером d1, расположенным под углом w к продольному направлению, то при расчете коэффициента прочности или укрепления отверстия за расчетный диаметр одиночного отверстия должно приниматься наибольшее из следующих значений:

размера, расположенного в продольном направлении;

размера, приведенного к продольному направлению и определенного по формуле

.

При эллиптической (или близкой к ней овальной) форме отверстия с максимальным размером d1 и с минимальным d2 (рис.4.7) за расчетный диаметр одиночного отверстия должно приниматься наибольшее из следующих значений, определяемых по формулам:

 или .

Для одиночных отверстий некруговой формы, расположенных в выпуклых днищах, за расчетный диаметр отверстия следует принимать наибольший размер независимо от его направления.

 

 

Рис.4.7


4.3.2. Коэффициент прочности деталей с одиночным отверстием

 

4.3.2.1. Одиночным следует считать отверстие, кромка которого удалена от кромки ближайшего отверстия на расстояние не менее .

4.3.2.2. Коэффициент прочности цилиндрической детали или выпуклого днища, ослабленных одиночным неукрепленным отверстием, следует определять по формуле

,

где .

4.3.2.3. Коэффициент прочности цилиндрической детали или выпуклого днища, ослабленных одиночным укрепленным отверстием, следует определять по формуле

.

Величину коэффициента jod следует определять согласно п.4.3.2.2.

Сумму компенсирующих площадей Sf следует определять согласно п.4.3.6.

4.3.2.4. Если деталь ослаблена рядом одиночных отверстий, то за расчетный коэффициент прочности следует принимать наименьшее из значений коэффициентов прочности для одиночного отверстия согласно пп.4.3.2.2 и 4.3.2.3, а для ряда отверстий согласно пп.4.3.3-4.3.7.

 

4.3.3. Коэффициент прочности цилиндрических деталей,

ослабленных неукрепленными отверстиями

 

4.3.3.1. Коэффициент прочности деталей, ослабленных продольным рядом или коридорным полем отверстий с одинаковым шагом, следует определять по формуле

.

4.3.3.2. Коэффициент прочности цилиндрической детали, ослабленной поперечным рядом или полем отверстий с одинаковым шагом, следует определять по формуле

.

4.3.3.3. При шахматном равномерном расположении отверстий должны быть вычислены три значения коэффициента прочности:

в продольном направлении (для шага t = 2a) - по п.4.3.3.1;

в поперечном направлении (для шага t1 = 2b) - по п.4.3.3.2;

в косом направлении - по формуле

,

где m = b/a.

Окончательным должно приниматься наименьшее из трех найденных значений.

4.3.3.4. Если деталь ослаблена рядом, состоящим из двух неукрепленных отверстий с расстоянием между их кромками менее , то коэффициент прочности следует принимать по формуле

.

Для ряда из четырех отверстий (рис.4.8), в котором минимальное значение коэффициента прочности jmin имеет место у средней пары отверстий, а по обоим направлениям от этих двух отверстий располагаются отверстия на расстояниях, определяемых коэффициентами прочности j1 и j2, значения которых удовлетворяют условию j1>j2³jod, расчетный коэффициент прочности допускается определять по формуле

.

 

 

; ; .

 

Рис.4.8. Ряд из четырех отверстий с неравномерным шагом

 

Примечание. При разных значениях диаметров соседних отверстий, различной их форме или наличии расточек следует руководствоваться п.4.3.1.1.

 

Для ряда из трех отверстий, расположение которых удовлетворяет указанным выше условиям jmin < j0d, j ³ j0d, расчетный коэффициент прочности допускается определять по формуле

.

Если условие для коэффициентов прочности j1, j2 или для одного из них не соблюдается, т.е. j1 и j2 < j0d, то расчетный коэффициент прочности следует определять по минимальному значению с учетом указаний пп.4.3.2.4, 4.3.3.1-4.3.3.3, 4.3.3.6, 4.3.3.7.

Коэффициент прочности jmin для ряда с тем же шагом следует определять по пп.4.3.3.1-4.3.3.3 соответственно.

4.3.3.5. Для деталей, ослабленных отверстиями с неравномерным шагом, расчетный коэффициент прочности jd должен приниматься равным минимальному значению коэффициента прочности, вычисленному по отверстиям данного ряда.

4.3.3.6. Если деталь из углеродистой стали ослаблена рядом из трех неукрепленных отверстий с неравномерным шагом, то коэффициент прочности допускается принимать равным среднеарифметическому значению из коэффициентов прочности для каждого шага:

jd = 0,5(jmin + jmax).

При косом несимметричном расположении отверстий коэффициенты прочности jmin и jmax должны вычисляться по формуле, приведенной в п.4.3.3.3 соответственно при a = a1, и a = a2. Кроме того, должен быть вычислен коэффициент прочности в продольном направлении для шага t = a1 + a2 и должно быть окончательно принято наименьшее из значений для продольного шага или для несимметричного косого ряда.

Приведенный коэффициент прочности для ряда с неравномерным шагом, вычисленный по формуле данного пункта, не должен приниматься больше коэффициента прочности для ряда из двух отверстий, определенного согласно п.4.3.3.4.

4.3.3.7. Если деталь из углеродистой стали ослаблена рядом с неравномерным периодически повторяющимся шагом, то коэффициент прочности следует определять как наименьшее из двух значений: среднеарифметического коэффициента прочности согласно п.4.3.3.6 для наихудшего сочетания двух соседних шагов и коэффициента прочности для двух смежных отверстий с минимальным шагом согласно п.4.3.3.4.

4.3.3.8. Если деталь ослаблена рядом отверстий одинакового диаметра, частично укрепленных приваренными штуцерами, то величина коэффициента прочности должна определяться по формуле

.

Величину коэффициента прочности jd следует определять согласно пп.4.3.3.1-4.3.3.5.

Сумму компенсирующих площадей Sf, отнесенную к одному отверстию ряда, следует определять согласно п.4.3.6.

4.3.3.9. Коэффициенты прочности детали с отверстиями равномерного или неравномерного ряда не должны превышать значения коэффициента прочности, определенного для одиночного отверстия данного ряда.

4.3.3.10. Если между отверстиями в расчетном сечении имеет место расточка или выборка металла, а также изменение толщины стенки за счет скоса внутренней или наружной поверхности, коэффициент прочности следует определять по общему правилу как отношение площади металла в сечении между кромками отверстий F0 к полной площади между центрами отверстий Ft. В общем случае расчетный коэффициент прочности jd следует определять по формуле

.

4.3.3.11. Коэффициенты прочности цилиндрической детали при различных вариантах расположения отверстий следует определять по табл.4.3 с учетом требований п.4.3.3.9.

4.3.3.12. Для криволинейных коллекторов расчет расстояний между центрами соседних отверстий как в продольном, так и в поперечном направлении должен производиться по среднему радиусу поперечного сечения коллектора.

4.3.3.13. Для криволинейных коллекторов с кривизной R/Da £ 5 следует выявить значение расчетного коэффициента прочности, определяющего наименьшую величину номинальной толщины стенки с учетом требований п.3.3.

Таблица 4.3

 

Ва-ри-ант

Характе-ристика располо-жения отверстий

Эскизы вариантов ослабления детали отверстиями

Формулы

1

2

3

4

1

Косой ряд с равными шагами

 

 

При m > 5 рекомендуется применять формулу

,

где n = 1/m = a/b, m = b/a

2

Ряд отверстий с разными шагами (из угле-родистой стали):

продольный

 

t' = tmin - минимальный шаг

Наименьшее из двух значений: среднеарифметического для наихудшего сочетания двух соседних шагов:

jd = 0,5(j'd + j"d)

для двух смежных отверстий с минимальным шагом продольного, поперечного и косого расположения отверстий:

 

поперечный

t'1 = t1min - минимальный шаг

,

где ,

      

 

       ,

где

 

косой

;

a1 = amin - минимальный шаг

 

,

 

где

При m >5 - см. вариант 1

3

Зубчатый ряд с равномер-

ным располо-

жением отверстий:

продольный

 

 

Наименьшее из трех значений:

для продольного ряда с шагом t

(см. п.4.3.3.1)

для косого ряда при m = b/a

(см. п.4.3.3.3)

для двух смежных отверстий

(см. п.4.3.3.4)

 

поперечный

m = b/a

Наименьшее из трех значений:

для поперечного ряда с шагом t1

(см. п.4.3.3.2)

для косого ряда при m = b/a

(см. п.4.3.3.3)

для двух смежных отверстий

(см. п.4.3.3.4)

4

Зубчатый ряд с нерав-номерным расположе-нием отверстий (из углеро-дистой стали):

продольный

 

 

 

 

;

Наименьшее из следующих значений:

наименьшего из определенных для продольных рядов I-I и II-II согласно п.4.3.3.1;

наименьшего из определенных для двух соседних косых шагов:

,

где ,

наименьшего для двух смежных отверстий:

,

где jmin - наименьшее значение для косого ряда согласно варианту 1

 

 

поперечный

 

;

Наименьшее из следующих значений:

наименьшего из определенных для поперечных рядов I-I и II-II согласно п.4.3.3.2;

наименьшего из определенных для двух соседних косых шагов:

где ,

наименьшего для двух смежных отверстий:

где jmin - наименьшее значение для косого ряда согласно варианту 1

5

 

Коридорное поле с неравно-мерным располо-жением отверстий

 

 

Наименьшее из двух значений:

для продольного ряда с разными шагами согласно варианту 2;

для поперечного ряда с разными шагами согласно варианту 2

 

6

Поле с пилооб-разным располо-жением отверстий

 

m = b/a

Наименьшее из следующих значений:

для продольного ряда с шагом согласно п.4.3.3.1;

для поперечного ряда с шагом согласно п.4.3.3.2;

для косого ряда при m = b/a согласно п.4.3.3.3

 

4.3.4. Коэффициент прочности выпуклых днищ

 

4.3.4.1. Для выпуклых днищ, имеющих кроме лаза другие отверстия, коэффициент прочности допускается определять по диаметру лазового отверстия, если удовлетворяются условия:

расстояние от кромки ближайшего отверстия до кромки лазового отверстия

;

расстояние между кромками любых других отверстий

,

где z- коэффициент, вычисляемый для лазового отверстия в выпуклом днище:

;

d1, d2 - диаметры отверстий в днище, кроме отверстия для лаза, мм.

4.3.4.2. Коэффициент прочности эллиптического, торосферического и полусферического днища, ослабленного одним неукрепленным лазовым отверстием, или при наличии других неукрепленных отверстий, если выполняются условия п.4.3.4.1, следует определять согласно п.4.3.2.

4.3.4.3. Коэффициент прочности эллиптического, торосферического и полусферического днища без лаза, а также с лазовым отверстием, если не выполняются условия п.4.3.4.1, ослабленного двумя или несколькими отверстиями, должен определяться так же, как для продольного направления цилиндрической детали, независимо от направления отверстий в днище.

 

4.3.5. Наибольший допустимый диаметр неукрепленного отверстия

 

4.3.5.1. Наибольший допустимый диаметр неукрепленного отверстия в цилиндрических деталях и выпуклых днищах следует определять по формуле

,

где [jd] - минимальное допустимое значение коэффициента прочности детали, ослабленной отверстиями, определяется по соответствующей формуле для вычисления толщины стенки конкретной детали.

Для цилиндрических деталей, у которых номинальным является наружный диаметр:

,

если расчет производится по номинальной толщине стенки;

,

если расчет производится по фактической толщине стенки.

Для цилиндрических деталей, у которых номинальным является внутренний диаметр:

,

если расчет производится по номинальной толщине стенки;

,

если расчет производится по фактической толщине стенки.

Для эллиптических, торосферических и полусферических днищ

,

где c, c2 - суммарная и эксплуатационная прибавки, определяемые согласно разделам 1 и 3.

4.3.5.2. Используемое в расчетах значение наибольшего допустимого диаметра неукрепленного отверстия следует принимать (независимо от результатов расчета по формуле п.4.3.5.1):

для цилиндрической детали - не более внутреннего диаметра с учетом указания п.4.3.8.7;

для выпуклого днища - не более 0,61 внутреннего диаметра;

для конической детали - не более внутреннего диаметра меньшего основания конического элемента.

 

4.3.6. Укрепление радиальных отверстий

 

4.3.6.1. Приводимая методика расчета укрепления отверстий применима, если отклонение оси штуцера от перпендикуляра к поверхности детали не превышает 15°.

4.3.6.2. Если диаметр отверстия превышает наибольший допустимый диаметр неукрепленного отверстия, определенный согласно п.4.3.5, то должна быть увеличена толщина стенки детали или укреплено отверстие при помощи усиленных штуцеров, накладок, отбортовок или разными способами одновременно.

Неукрепленным следует считать отверстие, не имеющее усиливающих деталей в виде штуцера или трубы с толщиной стенки, превышающей необходимую по расчету на прочность на внутреннее давление, или приварной накладки, вытянутой горловины или отбортованного воротника. Использование других способов укрепления может быть допущено по согласованию со специализированными научно-исследовательскими организациями.

4.3.6.3. Сумма компенсирующих площадей Sf укрепляющих деталей должна удовлетворять условию

Sf = fs + fn + fw ³ (d - d0)s0,

где fs - компенсирующая площадь штуцера, мм2;

fn - компенсирующая площадь накладки, мм2;

fw - компенсирующая площадь наплавленного металла сварных швов, мм2;

s0 - минимальная расчетная толщина стенки детали при j = 1 и c = 0, мм; определяется по формулам раздела 3.

Для отверстия, укрепленного отбортовкой, в формулах, определяющих сумму укрепляющих площадей Sf, вместо компенсирующей площади штуцера fs следует использовать компенсирующую площадь отбортованного элемента fb или fbs .

4.3.6.4. При укреплении одиночного отверстия детали до заданного значения коэффициента прочности j0c сумма компенсирующих площадей укрепляющих деталей должна удовлетворять условию

,

где j0d - коэффициент прочности детали, ослабленной неукрепленным одиночным отверстием; определяется согласно п.4.3.2.

4.3.6.5. При укреплении отверстий в ряду с одинаковыми диаметрами до заданного значения коэффициента прочности jc сумма компенсирующих площадей укрепляющих деталей должна удовлетворять условию

,

где jd - коэффициент прочности детали, ослабленной рядом неукрепленных отверстий; определяется согласно пп.4.3.3 и 4.3.4.

Если из двух соседних отверстий при равных значениях диаметров укрепляется до заданного значения jc только одно отверстие, то сумма компенсирующих площадей должна быть удвоена.

4.3.6.6. Величину компенсирующих площадей укрепляющих деталей следует определять по формулам:

для наружных штуцеров, конструкция которых соответствует рис.4.9, a:

;

для пропущенных штуцеров, конструкция которых соответствует рис.4.9, б:

;

для накладок, конструкция которых соответствует рис.4.9, в:

fn = 2bnsn;

для отбортованного внутрь воротника в выпуклом днище, конструкция которого соответствует рис.4.6:

,

где минимальная расчетная толщина стенки воротника должна быть определена по формуле

;

для отбортованного наружу воротника в выпуклом днище или для вытянутой горловины цилиндрической детали, конструкция которых соответствует рис.4.9, г:

.

 

 

Рис.4.9. Укрепление отверстий:

 - укрепление наружным штуцером; б - укрепление проходным штуцером;

в - укрепление накладкой; г - укрепление вытянутой горловиной;

s0b = s0s при одинаковой марке стали

 

Для сварных швов, присоединяющих штуцера или накладки с укрепляемой деталью, компенсирующая площадь fw принимается равной сумме площадей выступающих участков наплавленного металла без учета усиления шва в соответствии с рис.4.10, a, б, в.

 

 

Рис.4.10. Расчетная высота углового шва (Dmin):

 - шов наружного штуцера; б - шов утопленного штуцера; в - шов проходного штуцера

 

Компенсирующая площадь шва накладки, удаленного от края отверстия на расстояние, превышающее , не должна учитываться в расчете.

При одновременном использовании двух штуцеров (наружного и вваренного с внутренней стороны) или двух накладок (наружной и внутренней) компенсирующая площадь этих деталей должна суммироваться.

Используемое при расчете значение высоты штуцера hs должно приниматься равным размеру по чертежу на конкретный штуцер, но не более определенного по формуле

.

При одновременном укреплении отверстия штуцером и накладкой высота укрепленной части штуцера hs принимается без учета толщины накладки.

Используемое при расчете значение высоты штуцера hs1 или высоты воротника hb1 со стороны внутренней поверхности детали должно приниматься равным размеру по чертежу на конкретный штуцер или воротник, но не более определенного по формулам:

;

.

Используемое при расчете значение ширины накладки bn должно приниматься равным размеру по чертежу на конкретную накладку, но не более определенного по формуле

.

Если металл укрепляющей детали (штуцера или накладки) обладает меньшей прочностью, чем металл укрепляемой детали (барабана, коллектора, трубы, выпуклого днища), то компенсирующая площадь укрепляющей детали должна быть увеличена пропорционально отношению допускаемого напряжения укрепляемой детали к допускаемому напряжению укрепляющей детали.

Более высокая прочность укрепляющей детали в расчет не должна приниматься.

Избыточная толщина штуцера (трубы) может учитываться в компенсирующей площади штуцера fs только в том случае, если штуцер приваривается швом с полным проваром толщины стенки барабана (коллектора, днища или самого штуцера).

Значения минимальных расчетных толщин штуцеров s0s при j = 1 и c = 0 следует определять по разделу 3.

4.3.6.7. При расчете укрепления двух отверстий, имеющих разные размеры укрепляющих деталей, компенсирующие площади fs, fn и fb следует определять по формулам п.4.3.6.6 для каждой кромки отверстий, причем коэффициент 2 в указанных формулах следует заменить на 1. При определении суммы компенсирующих площадей Sf следует использовать среднеарифметическое значение площадей, вычисленных для каждой кромки.

4.3.6.8. Минимальные размеры сечения сварных швов Dmin, D1min, D2min, (по ГОСТ 2601 - расчетные высоты углового шва), соединяющих приварные штуцера или накладки с расчетными деталями, должны удовлетворять следующим условиям:

для штуцеров в соответствии с рис.4.10, a, б

; во всех случаях

высота штуцера hs - по п.4.3.6.6;

для накладок в соответствии с рис.4.9, в

.

Ширину накладки bn и ее наружный диаметр Dn следует принимать согласно рис.4.9, в.

В формулах использованы значения коэффициентов прочности сварных соединений, значения которых указаны в п.4.2.2.

 

4.3.7. Коэффициент прочности конических деталей

 

4.3.7.1. Коэффициент прочности конической детали, ослабленной одиночным отверстием, следует определять согласно пп.4.3.2, 4.3.5 и 4.3.6 при условии, что средний диаметр детали должен приниматься по сечению, по которому проходит продольная ось отверстия или штуцера. Согласно рис.4.11 условный диаметр конической детали следует определять по формуле

Dm = 2Bk + s,

где Bk - расстояние от точки пересечения продольных осей отверстия или штуцера с осью детали до условной точки пересечения продольной оси отверстия с внутренней образующей детали.

 

 

Рис.4.11. Коническая деталь

 

4.3.7.2. Коэффициент прочности конической детали, ослабленной поперечным рядом отверстий, следует определять согласно пп.4.3.3.2, 4.3.3.8 и 4.3.3.9.

4.3.7.3. Коэффициент прочности конической детали, ослабленной продольным или косым рядом отверстий, следует определять согласно пп.4.3.3.1, 4.3.3.3, 4.3.3.8 и 4.3.3.9 при условии, что во внимание принимаются два соседних отверстия, находящиеся на участке с наибольшими значениями диаметров детали.

4.3.7.4. Наибольший диаметр неукрепленного отверстия конической детали следует определять согласно п.4.3.5 с учетом п.4.3.7.1.

Минимальное допустимое значение коэффициента прочности конической детали должно определяться по формуле

,

где a - угол конусности, равный половине угла у вершины конической детали, град;

Dk - внутренний диаметр наибольшего основания конической детали, мм.

4.3.7.5. Укрепление радиальных отверстий конической детали должно рассчитываться согласно п.4.3.6 с учетом п.4.3.7.1.

 

4.3.8. Требования к конструкции

 

4.3.8.1. Расчетные детали, имеющие неукрепленные и (или) укрепленные отверстия, а также ответвления и тройниковые соединения трубопроводов, должны удовлетворять требованиям к конструкции детали, обусловленным используемыми методами расчетов и приведенным в разделе 3.

4.3.8.2. Расстояние между центрами двух соседних отверстий одинакового диаметра, измеряемое по поверхности среднего диаметра расчетной детали, должно быть не менее 1,4 диаметра расчетного отверстия или 1,4 полусумм расчетных диаметров отверстий, если диаметры разные.

При расположении отверстий в один продольный или поперечный ряд допускается указанное расстояние уменьшить до 1,3 диаметра. При установке в этом ряду труб газоплотной мембранной панели с приваркой к поверхности коллектора труб и проставок между ними (или плавников) по всей протяженности стыкуемой с коллекторами панели расстояние между отверстиями допускается уменьшить до 1,2 диаметра отверстия.

Рекомендуется выполнять поверочный расчет на прочность с обоснованием ресурса эксплуатации, если расчетное значение коэффициента прочности jd £ 0,3.

Расстояние между кромками двух соседних отверстий на внутренней поверхности барабана, коллектора или днища должно быть не менее 5 мм.

4.3.8.3. Толщина стенки штуцера или накладки не должна превышать толщины стенки детали. Допускаются двухсторонние накладки.

Допускается применение штуцера или накладки толщиной до двух толщин детали, если это определяется технологией изготовления, но в укреплении отверстия это утолщение не должно учитываться.

4.3.8.4. Для выпуклых днищ расстояние от кромки отверстия до внутренней поверхности цилиндрического борта, измеряемое по проекции, должно быть не менее 0,1D. Допускается уменьшение этого расстояния по согласованию со специализированными научно-исследовательскими организациями.

Требование не распространяется на полусферические днища с радиальными штуцерами.

4.3.8.5. Расстояние от кромки отверстия в днище до начала закругления отбортованного воротника, измеряемое по проекции, должно быть не менее толщины стенки днища.

4.3.8.6. Расстояние от кромки отверстия конической детали до ближайшего цилиндрического основания по поверхности среднего диаметра должно быть не менее , где средний диаметр определяется согласно п.4.3.7.1.

4.3.8.7. Максимальное значение диаметра отверстия в цилиндрической детали должно удовлетворять условию .

Это ограничение не относится к коллекторам и тройниковым соединениям, у которых отверстие является вытянутой горловиной с высотой выступающей части не менее 10 мм.

Для сварных тройниковых соединений из углеродистых и низколегированных марганцовистых и кремнемарганцовистых сталей, работающих при температурах, при которых допускаемые напряжения не зависят от величины расчетного ресурса (см. табл.2.2, раздела 2), допускается увеличение диаметра отверстия, определяемого из соотношения

.

При этом следует выполнить поверочный расчет данного элемента на дополнительные нагрузки согласно п.5.1.

 

4.4. Учет влияния нерадиальных отверстий

 

4.4.1. Общие положения

 

4.4.1.1. Под нерадиальными отверстиями или ответвлениями следует понимать отверстия или штуцера (трубы) расчетной детали, направления продольной оси которых отличаются от радиального направления более чем на 15°.

4.4.1.2. В данном разделе рассматриваются конструкции деталей, у которых угол отклонения продольной оси отверстия (ответвления) от радиального направления g не превышает 45°.

4.4.1.3. Расчетный диаметр отверстия следует принимать согласно п.4.3.1, т.е. так же, как для радиальных отверстий.

4.4.1.4. Зону укрепления отверстия следует принимать по средней поверхности детали от наружной поверхности штуцера (в любом направлении). Длину указанной зоны b следует определять по формуле

.

4.4.1.5. Зону укрепления отверстия наружным штуцером или наружной частью пропущенного штуцера следует принимать по средней поверхности штуцера от наружной поверхности детали (точнее - от условной линии пересечения указанных поверхностей).

Длину указанной зоны hs следует определять по формуле

.

4.4.1.6. Зону укрепления отверстия внутренней частью пропущенного штуцера следует принимать по средней поверхности штуцера от внутренней поверхности детали (точнее - от условной линии пересечения указанных поверхностей). Длину указанной зоны hs1 следует определять по формуле .

 

4.4.2. Проверка толщины стенки тройниковых соединений

 

4.4.2.1. Выбранные размеры тройниковых соединений с нерадиальным ответвлением должны удовлетворять условию

.

Для наклонного штуцера, конструкция которого соответствует рис.4.12, следует проверить выполнение данного условия для обоих участков детали (левая и правая сторона на рис.4.12).

Для тангенциального штуцера, конструкция которого соответствует рис.4.13, достаточно проверить выполнение указанного условия только на одном участке (правая сторона на рис.4.13).

4.4.2.2. Площадь нагружения Ap и площади сопротивления (A0 - для детали, As - для штуцера и An - для накладки) следует определять согласно рис.4.12 и 4.13.

Если наклонный штуцер располагается в плоскости под углом к продольной плоскости детали (в которой находится проекция продольной оси штуцера), то следует проверить выполнение условия, приведенного в п.4.4.2.1, для каждой проекции сечения на продольное и поперечное сечения детали.

 

 

Рис.4.12. Схема детали с наклонным штуцером

 

 

 

Рис.4.13. Схема детали с тангенциальным вводом штуцера

 

4.4.2.3. Для тройниковых соединений, конфигурация которых характеризуется плавными переходами от поверхности детали к ответвлению и которые, как правило, изготовляются ковкой (рис.4.14) или литьем (рис.4.15), допускается вычисление площадей сопротивления производить по усредненным площадям прямоугольной конфигурации при условной толщине стенки s - c и ответвления ss - c.

4.4.2.4. При укреплении детали наружной накладкой в условии, приведенном в п.4.4.2.1, следует принимать коэффициент m = 0,7, для внутренней накладки m = 0,3.

 

 

Рис.4.14. Схема кованого тройника

 

 

 

Рис.4.15. Схема литого тройника

 

 

4.4.3. Проверка толщины стенки развилок

 

4.4.3.1. Под развилками следует понимать тройниковое соединение Y - образного типа, предназначенное для разделения потока среды в трубе на два симметричных потока, направление которых располагается под углом b к продольному направлению основной трубы.

В настоящем подразделе рассматриваются конструкции развилок с углом 30° £ b £ 60°.

4.4.3.2. Выбранные размеры развилок, конструкция которых соответствует рис.4.16, должны удовлетворять условию

.

Условие проверяется отдельно для каждого из указанных на чертежах участков Ap1 и Ap 2, As1 и As 2, A01 и A02.

Длина укрепляющих зон определяется согласно пп.4.4.1.4, 4.4.1.5, 4.4.2.3.

 

 

Рис.4.16. Схема развилки

 

4.4.3.3. Для сварных развилок толщина стенки по сварному соединению должна превышать толщину стенки основного металла по данному участку (сечению) развилки не менее чем на 20%

 


5. МЕТОДИКА ПОВЕРОЧНОГО РАСЧЕТА НА ПРОЧНОСТЬ

 

5.1. Расчет барабанов, коллекторов и труб поверхностей нагрева

на дополнительные нагрузки и малоцикловую усталость

 

5.7.7. Условные обозначения

 

5.1.1.1. В формулах раздела приняты условные обозначения, представленные в табл.5.1.

 

Таблица 5. 1

 

Символ

Название

Единица измерения

1

2

3

Qq

Осевое усилие от веса

Н

Qc

Осевое усилие от самокомпенсации теплового расширения

Н

Mb

Изгибающий момент

Н·мм

Mk

Крутящий момент

Н·мм

Mbq

Изгибающий момент от весовых нагрузок

Н·мм

Mbc

Изгибающий момент от самокомпенсации

Н·мм

Mkq

Крутящий момент от весовых нагрузок

Н·мм

Mkc

Крутящий момент от самокомпенсации

Н·мм

f

Площадь поперечного сечения

мм2

W

Момент сопротивления поперечного сечения, коллектора или трубы (трубопровода)

мм3

jbw

Коэффициент прочности поперечного сварного соединения при изгибе

-

sj

Среднее окружное напряжение от внутреннего давления

МПа

sz

Суммарное среднее осевое напряжение

МПа

spz

Среднее осевое напряжение от внутреннего давления

МПа

szz

Осевое напряжение от осевой силы

МПа

sb

Напряжение изгиба

МПа

spr

Среднее радиальное напряжение от внутреннего давления

МПа

s1, s2, s3

Главные нормальные напряжения в расчетном сечении детали

МПа

seq

Эквивалентное напряжение от весовых нагрузок и внутреннего давления

МПа

seqc

Эквивалентное напряжение от весовых нагрузок, самокомпенсации и внутреннего давления

МПа

t

Напряжение кручения

МПа

 

5.1.2. Дополнительные нагрузки

 

5.1.2.1. Поверочный расчет на прочность от дополнительных нагрузок производится для барабанов, коллекторов и труб поверхности нагрева после выбора основных размеров.

Дополнительные нагрузки - изгибающие моменты, осевые усилия и крутящие моменты от веса и самокомпенсации - определяются отдельными расчетами.

5.1.2.2. Поверочный расчет на прочность барабанов и коллекторов от весовых нагрузок производится с учетом следующих положений:

при определении изгибающего момента Mbq коллектор рассматривается как балка, свободно лежащая на опорах. При незначительных местных нагрузках изгибающий момент вычисляется в предположении равномерного распределения нагрузки по длине барабана и коллектора;

поверку напряжений изгиба в барабанах и коллекторах следует производить в случаях, когда наружный диаметр барабана или коллектора не превышает 800 мм и расстояние между опорами превышает 6 м или когда на барабан или коллектор передаются значительные дополнительные усилия: вес присоединенных к коллектору деталей, реакции трубопроводов и реакции струи при открытии предохранительных клапанов.

 

5.1.3. Расчетные напряжения

 

5.1.3.1. Среднее окружное напряжение от внутреннего давления следует определять по формуле

.

Коэффициент прочности j при наличии отверстий или сварных швов должен приниматься с наименьшим значением для каждого расчетного сечения согласно разделу 4.

 

5.1.3.2. Суммарное среднее осевое напряжение от внутреннего давления, осевой силы и изгибающего момента определяется по формуле

,

где среднее осевое напряжение от внутреннего давления

;

среднее осевое напряжение от осевой силы

.

Коэффициент прочности при наличии отверстий и поперечного сварного соединения принимается равным меньшему значению коэффициента прочности в поперечном направлении или коэффициента прочности поперечного сварного соединения.

Осевое напряжение от изгибающего момента

.

Для барабанов или коллекторов следует выявить наиболее ослабленное сечение, обусловленное наибольшим изгибающим моментом Mb, наименьшим моментом сопротивления W или наименьшими коэффициентами прочности j и jbw.

5.1.3.3. Среднее радиальное напряжение от внутреннего давления определяется по формуле

.

5.1.3.4. Напряжение кручения определяется по формуле

.

5.1.3.5. Напряжения определяются по номинальной толщине стенки, выбранной при расчете на внутреннее давление.

5.1.3.6. При определении напряжений от весовых нагрузок в формулы подставляются усилия Qq и моменты Mbq , Mkq, а при определении напряжений от действия весовых нагрузок и самокомпенсации в формулы подставляются суммарные усилия Qq + Qc и моменты Mbq + Mbc, Mkq + Mkc.

5.1.3.7. Для расчетного сечения цилиндрических барабанов, коллекторов и труб вычисляются три главных нормальных напряжения s1, s2, s3, которые представляют собой алгебраическую сумму действующих в одном направлении напряжений от приложенных к расчетному сечению нагрузок.

Главные напряжения вычисляются по следующим формулам:

при наличии крутящего момента

;

;

s3 = sr;

при отсутствии крутящего момента

s1 = sj; s2 = sz; s3 = sr, если sj > sz > sr;

s1 = sz; s2 = sj; s3 = sr, если sz > sj > sr.

Для обеспечения условия s1 > s2 > s3 индексы при обозначениях главных напряжений окончательно устанавливаются после определения численных значений напряжений sj и sz.

5.1.3.8. Эквивалентные напряжения seq и seqc для расчетного сечения цилиндрического барабана, коллектора и трубы принимаются равными:

seq = s1 - s3,

где s1, и s3 определены по весовым нагрузкам Qq, Mbq и Mkq;

seqc = s1 - s3,

где s1 и s3 определены по суммарным нагрузкам Qq + Qc, Mbq + Mbc, Mkq + Mkc.

 

5.1.4. Допускаемое эквивалентное напряжение

 

5.1.4.1. Величина эквивалентного напряжения в цилиндрических барабанах, коллекторах и трубах от действия внутреннего давления и весовых нагрузок должна удовлетворять условию

seq £ 1,1[s].

5.1.4.2. Величина эквивалентного напряжения в трубах от действия внутреннего давления, весовых нагрузок и самокомпенсации тепловых расширений должна удовлетворять условию    

seqc £ 1,5[s].

Для трубопроводов и труб, расчетные температуры которых обусловливают использование для определения допускаемых напряжений кратковременных характеристик пределов прочности и текучести, допускается несоблюдение указанного условия, если поверочный расчет на усталость по п.5.2 показывает, что заданное число циклов рассчитываемой детали меньше допустимого.

 

5.1.5. Расчет на малоцикловую усталость

 

5.1.5.1. Условные обозначения

5.1.5.1.1. В формулах приняты условные обозначения, представленные в таблице 5.2.

 

Таблица 5.2

 

Символ

Название

Единица измерения

1

2

3

s

Приведенное напряжение от внутреннего давления

МПа

[s]

Номинальное допускаемое напряжение

МПа

sc

Максимальное местное расчетное напряжение, определенное с учетом ползучести

МПа

seq, seqc

Эквивалентные напряжения соответственно от весовых нагрузок и внутреннего давления и суммарное от весовых нагрузок, самокомпенсации и внутреннего давления

МПа

st/t

Условный предел длительной прочности при растяжении

МПа

sa

Расчетная амплитуда напряжений

МПа

[sa]

Допускаемая амплитуда напряжений, определенная по расчетным кривым малоцикловой усталости

МПа

[s*a]

Допускаемая амплитуда напряжений

МПа

si

Главные условно-упругие напряжения в расчетной точке детали          (i = 1, 2, 3)

МПа

seij

Эквивалентные напряжения (i, j = 1, 2, 3)

МПа

Dsey

Размах эквивалентных напряжений

МПа

[smax, smin]

Допускаемые напряжения, соответствующие температуре, при которой достигаются максимальные и минимальные эквивалентные напряжения

МПа

Et

Модуль упругости, соответствующий максимальной температуре цикла

МПа

Emax, Emin

Модули упругости, соответствующие температуре, при которой достигаются максимальные и минимальные эквивалентные напряжения

МПа

N

Число циклов нагружения

-

Ni

Число циклов нагружения данного типа

-

[N]

Допускаемое число циклов нагружения по расчетным кривым малоцикловой усталости

-

[N*]

Допускаемое число циклов

-

Dc

Параметр, характеризующий допускаемое повреждение при совместном действии усталости и ползучести

-

m

Показатель степени в уравнении длительной прочности

-

l

Количество различных номинальных режимов

-

ti

Длительность работы при данных параметрах, включая время пуска и останова

ч

t0

Расчетный ресурс эксплуатации

ч

 

5.1.5.2. Общие положения

5.1.5.2.1. Расчет на малоцикловую усталость является поверочным и выполняется после выбора основных размеров детали.

5.1.5.2.2. Поверочный расчет производится с учетом всех нагрузок (основных и дополнительных) для всех расчетных режимов работы.

5.1.5.2.3. Расчетные кривые малоцикловой усталости приведены для материалов, допущенных к применению Госгортехнадзором России и перечисленных в табл.2.2, 2.3, 2.4 раздела 2.

5.1.5.2.4. Методика применима для расчета деталей, работающих при малоцикловой усталости во всем диапазоне изменения расчетных температур. Уровень температур, обусловливающих необходимость учета ползучести, устанавливается согласно разделу 2.

5.1.5.2.5. Поверочный расчет на малоцикловую усталость допускается не производить, если повреждаемость от действия всех видов нагрузок удовлетворяет одновременно двум условиям:

; .

При расчете величины [N]i в этом случае амплитуды напряжений принимаются равными:

sa = 3s - для циклов пуск-останов;

- для циклов колебания давления с размахом Dp не менее 30% p (исключая пуск-останов);

sa = 2EaDt - для температурных циклов всех видов, где Dt - перепад температуры по толщине стенки, периметру и длине детали, включая колебания температуры среды во времени.

Суммарное эквивалентное напряжение seqc определяется для номинального режима эксплуатации.

5.1.5.2.6. Расчет напряжений в элементах котлов и трубопроводов производится по методикам, изложенным в разделах 6, 7, 8, 9 и 10.

Допускается использование других расчетных методик, а также экспериментальных значений напряжений, определенных в условиях, соответствующих условиям эксплуатации.

5.1.5.3. Переменные нагрузки

5.1.5.3.1. За цикл нагружения принимается повторяющееся изменение нагрузки (как силовой, так и температурной) от первоначального значения до максимального (минимального) и возврат к первоначальной нагрузке. Цикл нагружения характеризуется амплитудой напряжения, числом циклов нагружения и уровнем максимальной температуры цикла.

5.1.5.3.2. При расчете на усталость учитываются следующие нагружающие факторы:

изменение давления при пуске-останове котла;

колебания рабочего давления при эксплуатации (более 15% от номинального значения);

изменение внешних нагрузок при эксплуатации (весовые нагрузки, наддув и т.п.);

температурные перепады при пуске-останове котла, включая компенсационные нагрузки при тепловых расширениях трубопроводов;

дополнительные перепады температур, вызывающие колебания температуры среды или теплового потока при эксплуатации.

5.1.5.4. Переменные напряжения

5.1.5.4.1. Расчет на усталость основывается на условно-упругих напряжениях, действующих в выбранной точке рассчитываемой детали, где ожидаются наибольшие напряжения. Расчет производится для всех основных этапов эксплуатации: пуска, рабочего режима, останова.

5.1.5.4.2. Для каждой выбранной точки детали определяют три главных нормальных напряжения s1, s2, s3, представляющих собой алгебраическую сумму действующих в одном направлении напряжений от всех приложенных в данный момент нагрузок с учетом местных концентраторов напряжений (отверстий, галтелей и т.п.). Значения коэффициентов концентрации следует принимать по расчету напряжений в соответствии с п.5.1.5.2.6.

 

Примечание. До разработки соответствующей методики расчета для барабанов и коллекторов коэффициент концентрации окружных напряжений от действия внутреннего давления на кромках цилиндрических отверстий допускается принимать равным 3, для выпуклых днищ 2,2, а коэффициент концентрации окружных и осевых напряжений от действия температурного перепада по толщине стенки для цилиндрических и сферических деталей равным 2,0.

 

5.1.5.4.3. Для цилиндрических деталей главные нормальные напряжения si определяются в соответствии с п.5.1.

5.1.5.4.4. По значениям главных нормальных напряжений определяют эквивалентные напряжения для расчетных точек детали в заданные моменты времени как алгебраическую разность главных нормальных напряжений:

seij = si - sj.

5.1.5.4.5. Напряжения, вызываемые технологическими отклонениями при изготовлении детали (разностенность труб, смещение кромок и т.п.), не учитываются, если величина отклонений не превышает нормы, установленной в Правилах госгортехнадзора.

5.1.5.5. Размах и амплитуда переменных напряжений

5.1.5.5.1. Для каждого цикла нагружения существуют режимы, при которых принимают максимальные и минимальные значения величины:

; .

В расчет вводится размах условно-упругих эквивалентных напряжений Dseij, равный наибольшему значению:

.

5.1.5.5.2. Расчетная амплитуда напряжений принимается наибольшей из следующих величин, определяемых по формулам:

;

.

5.1.5.5.3. Если деталь подвергается действию циклов разного типа, то величина расчетной амплитуды sа определяется отдельно для каждого типа цикла.

5.1.5.6. Допускаемая амплитуда переменных напряжений

5.1.5.6.1. Для оценки допускаемой амплитуды переменных напряжений  при заданном числе циклов N или допускаемого числа циклов [N*] при заданной амплитуде напряжений sа используется принцип суммирования повреждений в виде

;

где т определяется согласно п.2.6.

Значения параметра Dc приведены на рис.5.1. Рекомендуется принимать st/t = 1,5[s].

 

 

Рис.5.1. Суммарная повреждаемость как функция от повреждаемости,

вызванной ползучестью

 

5.1.5.6.2. Допускаемая амплитуда переменных напряжений [sа] для заданного числа циклов N или допускаемое число циклов [N] для заданной амплитуды переменных напряжений sа без учета влияния повреждения от ползучести определяются по кривым малоцикловой усталости, приведенным на графиках для максимальной температуры цикла (рис.5.2, 5.3, 5.4).

Расчетные кривые откорректированы в целях учета влияния среднего напряжения (асимметрии цикла). Поскольку при испытаниях, по результатам которых построены усталостные кривые, не учитывалось влияние коррозии при нарушениях водного режима и консервации котлов и трубопроводов, влияние этих факторов должно учитываться введением дополнительного коэффициента запаса по напряжениям не менее 4 или по долговечности не менее 50.

 

 

Рис.5.2. Расчетные кривые малоцикловой усталости углеродистых сталей

 

 

Рис.5.3. Расчетные кривые малоцикловой усталости низколегированных

сталей марок 12Х1МФ, 15Х1М1Ф, 12МХ и 15ХМ

 

 

Рис.5.4. Расчетные кривые малоцикловой усталости аустенитных хромоникелевых сталей

 

5.1.5.6.3. При максимальных температурах металла, отличающихся от приведенных на графиках (см. рис.5.2, 5.3, 5.4), допускаемая амплитуда напряжений [sа] или допускаемое число циклов [N] определяются линейной интерполяцией; экстраполяция кривых не допускается.

5.1.5.6.4. Расчетное напряжение при ползучести sc представляет собой максимальное главное нормальное напряжение, определенное с учетом пластичности и ползучести материала при номинальном режиме эксплуатации.

 

Примечание. До разработки соответствующей методики расчета барабанов и коллекторов допускается принимать sc наибольшим из значений, вычисленных по формулам:

sc = Kseq; sc = Kseqc,

где K = 1,4 при ;

      K = 1,5 при .

Значения seq и seqc следует определять, принимая значения коэффициента ослабления отверстиями j = 1. 11

5.1.5.6.5. Если 1,25(sc/st/c) ³ 1, то допускается не более 1000 расчетных циклов пуск-останов; если 1,25(sc/st/c) £ 0,5, то повреждаемость от ползучести не учитывается.

5.1.5.6.6. Если в расчетной точке детали имеются сварные швы, то допускаемое число циклов уменьшается в два раза по сравнению с полученным по кривым малоцикловой усталости при отсутствии швов.

5.1.5.6.7. Если деталь подвергается циклам нагружения различного типа при неизменных значениях параметров номинального режима, то для оценки долговечности следует использовать формулу

.

Если в процессе работы значения температуры и нагрузок при номинальном режиме изменяются, то для оценки долговечности следует использовать формулу

где .

5.1.5.6.8. Если заданное число циклов менее 1000, то расчет рекомендуется производить на 1000 циклов.

 

5.2. Расчет трубопроводов пара и горячей воды

на дополнительные нагрузки и малоцикловую усталость

 

5.2.1. Общие положения

 

5.2.1.1. Предполагается, что рабочие параметры транспортируемой среды в течение полного срока службы трубопровода не изменяются.

Для выполнения расчета прочности трубопровода необходимо предварительно определить возникающие в нем внутренние силовые факторы. Применяющиеся для этой цели методики и программы основываются на различных классических и специальных методах раскрытия статической неопределимости.

5.2.1.2. Предусматривается выполнение расчета прочности трубопровода как на статическое, так и на циклическое нагружение. Предусмотрены различные требования к расчетам высокотемпературных и низкотемпературных трубопроводов. К высокотемпературным относятся трубопроводы из углеродистых, низколегированных марганцовистых, хромомолибденовых и хромомолибденованадиевых сталей, эксплуатирующихся при температуре среды в них выше 370 °С, и трубопроводы из аустенитных марок сталей, эксплуатирующихся при температуре среды в них выше 450 °С. Остальные трубопроводы относятся к низкотемпературным.

5.2.1.3. Расчет низкотемпературных трубопроводов на статическое нагружение производится по формулам, полученным по методу предельного состояния (формулы для расчета трубопровода на совместное действие давления, весовой нагрузки и рабочих нагрузок промежуточных опор). Расчет же таких трубопроводов на циклическое нагружение производится по методике, основанной на исследованиях в области малоцикловой усталости и учитывающей результаты экспериментального исследования разрушения элементов трубопровода при циклическом нагружении (формулы для расчета на совместное действие давления, самокомпенсации и усилий сопротивления промежуточных опор).

5.2.1.4. Расчет высокотемпературных трубопроводов на совместное статическое нагружение давлением, весовой нагрузкой и усилиями опор в рабочем состоянии также выполняется по формулам предельного состояния. Для расчета таких трубопроводов на статическое действие всех нагружающих факторов в рабочем состоянии применяется метод максимальных напряжений при учете релаксации напряжений самокомпенсации. Цикличность нагружения высокотемпературных трубопроводов учитывается в расчете недопущением пластических перегрузок в холодном и рабочем состоянии.

 

5.2.2. Условные обозначения

 

5.2.2.1. В формулах приняты обозначения, представленные в табл.5.3

 

Таблица 5.3

 

Символ

Наименование

Единица измерения

1

2

3

Da

Номинальный наружный диаметр поперечного сечения трубы

мм

s

Номинальная толщина стенки трубы

мм

r

Средний радиус поперечного сечения

мм

R

Радиус оси криволинейной трубы

мм

a

Начальная эллиптичность (овальность) поперечного сечения трубы (отношение разности максимального и минимального наружных диаметров сечения к их полусумме)

%

F

Площадь поперечного сечения трубы

мм2

W

Момент сопротивления трубы изгибу

мм3

l

Безразмерный геометрический параметр

-

q*

Угол между крайними сечениями криволинейной трубы

град

tp

Рабочая температура стенки участка трубопровода

°С

tx

Температура стенки в холодном состоянии

°С

tн

Температура нагрева участка трубопровода (tн = tp - tx)

°С

tр.ф, tх.ф

Фиктивные температуры нагрева, принимаемые в расчетах для рабочего и холодного состояния

°С

p

Рабочее давление в трубопроводе

МПа

Mx, My, Mz

Изгибающие и крутящие моменты в сечении трубопровода

Н·мм

Nz

Осевая сила в сечении трубопровода, возникающая под действием весовой нагрузки и самокомпенсации температурных расширений

Н

w

Безразмерный параметр внутреннего давления

-

E

Модуль упругости материала

МПа

Ep

Модуль упругости материала при рабочей температуре

МПа

Ex

То же, в холодном состоянии

МПа

kp

Коэффициент податливости криволинейной трубы, учитывающий влияние внутреннего давления (отношение податливости на изгиб криволинейной и прямолинейной труб одинаковых сечений и материала)

-

Коэффициент податливости криволинейной трубы, учитывающий влияние внутреннего давления и сопряжения с прямолинейными трубами

-

gm

Коэффициент интенсификации изгибных поперечных напряжений в криволинейной трубе

-

bm

Коэффициент интенсификации изгибных продольных напряжений в криволинейной трубе

-

sпр

Приведенное напряжение в стенке трубы от действия внутреннего давления

МПа

szMN, zMN

Продольные напряжения от изгибающего момента и осевой силы

МПа

t

Напряжение кручения

МПа

sдоп

Допускаемое напряжение при расчете трубопровода только на действие давления

МПа

jw, jbw

Коэффициенты прочности продольного и поперечного сварных стыков

-

kп

Коэффициент перегрузки

-

с1

Допуск на утонение стенки трубы

мм

 

5.2.3. Этапы полного расчета трубопровода

 

5.2.3.1. Для оценки прочности трубопровода, а также для определения передаваемых им усилий на оборудование и перемещений его сечений при нагреве производится полный расчет трубопровода. Он складывается из ряда расчетов (этапов), каждый из которых выполняется на совместное действие определенного частного сочетания нагружающих факторов (табл.5.4).

 

Таблица 5.4

 

Этапы полного расчета трубопровода

 

Обозна- чение

Содержание этапа

Учитываемые нагружающие факторы для трубопроводов

Назначение этапа для трубопроводов

 

 

низко температурных

высоко- температурных

низко- температурных

высоко- температурных

1

2

3

4

5

6

I

Расчет на действие весовой нагрузки

Внутреннее давление; весовая нагрузка; усилия промежуточных опор в рабочем состоянии (рабочие нагрузки опор)

Оценка статистической прочности на совместное действие указанных нагружающих факторов

II

Расчет для рабочего состояния на совместное действие всех нагружающих факторов

Внутреннее давление; весовая нагрузка; усилия промежуточных опор в рабочем состоянии; температурное расширение (самокомпенсация); "собственные" смещения защемленных концевых сечений

 

Оценка статической прочности на совместное действие всех нагружающих факторов

 

 

Монтажная растяжка

Саморастяжка или монтажная растяжка

Определение усилий воздействия трубопровода на оборудование

III

Расчет на действие тем-

Внутреннее давление; температурное расширение;

Оценка усталой прочности

 

 

пературного расширения (на самоком-пенсацию)

"собственные" смещения защемленных концевых сечений; усилия сопротивления промежуточных опор

Определение температурных перемещений (т.е. перемещений при переходе трубопровода из холодного состояния в рабочее)

IV

Расчет для холодного (нерабочего) состояния на

Весовая нагрузка; усилия промежуточных опор (нагрузки опор в холодном состоянии)

 

Оценка прочности

 

совместное действие всех нагружающих факторов

Монтажная растяжка

Саморастяжка

Определение усилий воздействия трубопровода на оборудование

 

Как видно из табл.5.4, оценка прочности не требуется:

для высокотемпературного трубопровода в расчете по этапу III;

для низкотемпературного трубопровода в расчетах по этапам II и IV.

5.2.3.2. На этапах I, II, III полного расчета внутреннее давление на участке трубопровода принимается равным максимальному рабочему давлению транспортируемой среды на этом участке.

5.2.3.3. Рабочая температура стенки участка трубопровода tp принимается равной максимальной рабочей температуре транспортируемой среды в пределах этого участка.

5.2.3.4. В расчете по этапу III в качестве температуры нагрева участка трубопровода принимается разность его температур в рабочем и холодном состоянии, т.е. tн = tp - tx. Значение коэффициента линейного расширения металла в расчете по этапу III принимается в зависимости от рабочей температуры tp.

5.2.3.5. Расчет по этапу I производится при нулевом значении температуры нагрева трубопровода (или при нулевом значении коэффициента линейного расширения) и нулевых значениях "собственных" смещений концевых защемленных сечений (эти смещения вызываются температурным расширением корпуса оборудования).

5.2.3.6. Расчет низкотемпературных трубопроводов по этапу II производится при введении значений действительной температуры нагрева участков tн.

При расчете высокотемпературных трубопроводов по этапу II в целях оценки прочности допускается учет саморастяжки, обусловленной релаксацией напряжений самокомпенсации. В этом случае вместо значений действительной температуры нагрева вводятся значения фиктивной (условно заниженной) температуры нагрева, определяемые по формуле

tр.ф = 0,5ctн,

где c - коэффициент усреднения компенсационных напряжений, принимаемый по рис.5.5 в зависимости от рабочей температуры tр.

 

 

Рис.5.5. Коэффициент усреднения компенсационных напряжений:

1 - сталь 20; 15ГС; 16ГС; 2 - 12Х1МФ; 15Х1М1Ф; 15ХМ; 12МХ; 3 - Х18Н10Т; Х18Н12Т

 

При этом вводимые в расчет значения "собственных" смещений концевых сечений также должны быть уменьшены умножением на коэффициент 0,5c.

Во всех случаях расчет по этапу II производится при значениях коэффициента линейного расширения, соответствующих рабочей температуре участков tр.

5.2.3.7. Расчет по этапу IV низкотемпературных трубопроводов выполняется при нулевом значении температуры нагрева (или нулевом значении коэффициента линейного расширения).

Расчет по этапу IV высокотемпературных трубопроводов производится при введении в качестве значений температуры нагрева участков фиктивной отрицательной температуры, определяемой по формуле

tх.ф = -dtн,

где d - коэффициент релаксации компенсационных напряжений принимается по рис.5.6, а также при введении значений фиктивных "собственных" смещений концевых сечений, получающихся в результате умножения значений действительных смещений на величину d со знаком "минус". При этом принимаемые значения коэффициента линейного расширения должны соответствовать рабочей температуре tр.

 

 

Рис.5.6. Коэффициент релаксации компенсационных напряжений:

1 - сталь 20; 15ГС; 16ГС; 2 - 12Х1МФ; 15Х1М1Ф; 15ХМ; 12МХ; 3 - Х18Н10Т; Х18Н12Т

 

5.2.3.8. Расчет по этапам I и II производится при модулях упругости материала, соответствующих рабочей температуре tp, а расчет по этапам III и IV - при модулях упругости, соответствующих температуре холодного состояния tx. Значение модуля упругости следует принимать согласно приложению.

5.2.3.9. Коэффициент линейного расширения материала следует принимать согласно приложению.

5.2.3.10. Расчеты по этапам I, II, IV выполняются при введении соответствующих значений усилий промежуточных упругих опор (их нагрузок в рабочем и холодном состоянии трубопровода).

Усилия сопротивления промежуточных упругих опор, учитываемые на этапе III полного расчета, возникают в результате деформирования трубопровода при нагреве.

Эти усилия (приращения нагрузок опор) автоматически учитываются, если расчет выполняется по схеме нагреваемого трубопровода, опирающегося на упругие опоры, причем в расчет вводятся фактические жесткости этих опор.

Воздействие на трубопровод опор скольжения и направляющих опор учитывается на всех этапах полного расчета трубопровода; при этом в точках установки опор вводятся жесткие связи, исключающие недопустимые опорой перемещения.

5.2.3.11. Величины сил трения, возникающих при перемещениях трубопровода от нагрева, при определении напряжений в низкотемпературных трубопроводах учитываются на этапе III, в высокотемпературных - на этапе II и при определении усилий на опоры и оборудование - на этапе II для всех трубопроводов.

5.2.3.12. Об учете монтажной растяжки в расчетах по этапам II и IV см. пп.5.2.8.5-5.2.8.8.

5.2.3.13. Если трубопровод эксплуатируется не в единственном варианте температурного состояния всех его участков, то полный расчет его следует выполнять для того варианта температурного состояния, которому соответствуют наиболее тяжелые условия нагружения. Если такой вариант температурного состояния невозможно установить без полного расчета, то расчет выполняется для различных вариантов состояния.

5.2.3.14. Если трубопровод состоит из низкотемпературных и высокотемпературных участков, допускается расчет его прочности производить с учетом саморастяжки высокотемпературных участков (см. пп.5.2.3.6 и 5.2.3.7).

 

5.2.4. Определение усилий воздействия трубопровода на оборудование

 

5.2.4.1. Усилия воздействия трубопровода на оборудование (нагрузки на оборудование), к которому он присоединен, определяются расчетами по этапам II (для рабочего состояния) и IV (для холодного состояния). Расчетом по этапу III определяются приращения усилий трубопровода при переходе его из холодного состояния в рабочее.

5.2.4.2. Если имеются результаты расчета трубопровода по этапу II с учетом саморастяжки по способу фиктивной температуры нагрева (см. п.5.2.3.6) и если рабочая температура и материал всех его участков одинаковы, то передаваемые нагрузки на оборудование в рабочем состоянии могут быть определены по формуле

,

где  - какой-либо силовой фактор (вертикальная сила, момент в горизонтальной плоскости и т.д.) из совокупности искомых усилий;

XII - тот же силовой фактор, определяемый на этапе II расчета при введении коэффициента усреднения c;

XI - тот же силовой фактор, вычисляемый на этапе I расчета.

В противном случае требуется выполнить специальный расчет высокотемпературного трубопровода по этапу II с введением температуры нагрева tн.

5.2.4.3. Если температура и материал всех участков низкотемпературного трубопровода одинаковы, усилия воздействия его на оборудование в холодном состоянии можно определить без выполнения расчета по этапу IV. При этом используется формула

,

где XIV - какой-либо силовой фактор из совокупности искомых усилий;

XII, XIII - тот же силовой фактор, вычисляемый на этапах II и III расчета.

5.2.4.4. Об учете монтажной растяжки см. пп.5.2.8.5-5.2.8.9.

5.2.4.5. Допустимые нагрузки на оборудование устанавливаются заводом-изготовителем.

 

5.2.5. Определение коэффициента податливости криволинейных труб и секторных колен

 

5.2.5.1. При раскрытии статической неопределимости трубопровода учитывается повышенная податливость на изгиб криволинейных труб и секторных колен, для чего необходимо определять коэффициенты податливости этих элементов.

5.2.5.2. Коэффициент податливости криволинейной трубы  вычисляется как произведение коэффициента податливости kp, определяемого без учета стесненности деформации ее концов от влияния примыкающих прямолинейных труб, на коэффициент z, учитывающий эту стесненность деформации, т.е. = kpz.

5.2.5.3. Для определения коэффициента податливости kp используется формула

.                                                          (1)

Величина b вычисляется по следующим формулам:

                                            (2)

Параметры l и w вычисляются по формулам:

;   .

5.2.5.4. Для труб, значения l и w которых удовлетворяют условиям 1,6 ³ l ³ 0,1 и w £ 0,001, коэффициент kp можно определять по формуле

.

5.2.5.5. Коэффициент z можно определить по графику на рис.5.8 в зависимости от геометрического параметра трубы l, угла q* между крайними сечениями трубы и отношения радиусов R/r (рис.5.7). Для промежуточных значений угла q* и отношения R/r коэффициент z определяется по методу линейной интерполяции, при этом значение z для угла q* = 0 принимается по формуле

.

 

 

Рис.5.7. Криволинейная труба

 

 

Рис.5.8. Коэффициент z

 

При составлении программы расчета трубопроводов для вычисления коэффициента z можно использовать данные табл.5.5.

 

Таблица 5.5

 

Значения коэффициента z

 

 

Угол q*

l

60°

90°

60°

90°

 

R/r = 2

R/r = 4

0,00

0,25

0,42

0,37

0,58

0,40

0,62

0,77

0,73

0,88

0,60

0,73

0,84

0,82

0,91

1,65

1,00

1,00

1,00

1,00

 

R/r = 6

R/r = 8

0,00

0,47

0,65

0,55

0,70

0,20

0,67

0,85

0,74

0,88

0,40

0,81

0,93

0,85

0,95

1,65

1,00

1,00

1,00

1,00

 

5.2.5.6. Для труб с l ³ 2,2 можно принимать z = 1.

Для труб, имеющих значение геометрического параметра l = 1,65 или значение угла                q* > 90°, принимается z = 1.

5.2.5.7. Для расчета трубопровода по этапу IV коэффициент податливости следует определять при p = 0.

5.2.5.8. Коэффициент податливости колена, сваренного из прямолинейных секторов (секторного колена), определяется согласно указаниям пп.5.2.5.2-5.2.5.7. При этом радиус вычисляется по формуле (см. рис.5.9)

,

где lср - длина сектора по центральной оси;

qс - угол между его крайними сечениями.

 

 

Рис.5.9. Колено, выполненное сваркой из прямых секторов (секторное колено)

 

5.2.6. Определение напряжений

 

5.2.6.1. Напряжения определяются в концевых и промежуточных сечениях трубопровода. Внутренние силовые факторы (изгибающие моменты Mx, My, крутящий момент Mz и осевая сила Nz), принимаемые для расчета напряжений, определяются расчетом трубопровода по соответствующему этапу.

5.2.6.2. Определение напряжений на этапе I полного расчета

5.2.6.2.1. На этапе I полного расчета трубопровода определяются эффективные напряжения в его поперечных сечениях. Формулы, служащие для вычисления этих напряжений, получены по методу предельного состояния и характеризуют напряженное состояние поперечного сечения в целом.

5.2.6.2.2. Для поперечных сечений прямолинейных и криволинейных труб эффективное напряжение определяется по формуле

.

(см. также п.5.2.6.2.3).

Приведенное напряжение от внутреннего давления вычисляется по формуле

.                                                      (3)

Значение допуска на утонение стенки c1 принимается по техническим условиям на поставку труб, идущих на изготовление трубопровода.

Величина коэффициента прочности при ослаблении сварными соединениями jw принимается в соответствии с данными раздела 4.2 Норм.

Продольное напряжение от изгибающего момента и осевой силы и напряжение кручения вычисляются по формулам:

;

.                                                            (4)

Момент сопротивления W и площадь поперечного сечения F определяются по формулам:

;

F = ps(Dн - s).

Коэффициент прочности поперечного сварного стыка при изгибе jbw принимается в соответствии с разделом 4.2 Норм.

Коэффициент перегрузки kп принимается по п.5.2.6.2.4.

5.2.6.2.3. Для криволинейных труб, геометрический параметр которых удовлетворяет условию l £ 1,4, дополнительно к расчету по п.5.2.6.2.2 вычисляется эффективное напряжение по формуле

.

Значения величин W и Y принимаются по графикам на рис.5.10 и 5.11. Значение sпр определяется по формуле (3), а значение [s] - по данным раздела 2 Норм. При l ³ 0,05 значение W можно определять также по формуле

W = 0,93l-0,755.

Коэффициент перегрузки kп принимается согласно п.5.2.6.2.4.

 

 

Рис.5.10. Коэффициент W

 

 

Рис.5.11. Коэффициент Y

 

5.2.6.2.4. При выполнении расчета трубопровода без существенных упрощений (учтены все ответвления и опоры и т.д.) и при его монтаже по действующим инструкциям коэффициент перегрузки kп принимается равным 1,4.

Если дополнительно к указанным условиям производится специальная корректировка затяжки пружин промежуточных опор для учета отклонений фактических значений весовой нагрузки, жесткости пружин опор и температурных перемещений от принятых в расчете значений, а также выполняется наладка трубопровода, может быть принято kп = 1,2.

Для несложных малогабаритных трубопроводов, когда не применяются промежуточные опоры, а напряжения от весовой нагрузки малы (не более 10 МПа), также можно принимать           kп = 1,2.

5.2.6.2.5. Для равнопроходного или почти равнопроходного тройникового узла (отношение наружного диаметра к меньшему не более 1,3) вычисляется эффективное напряжение по формуле п.5.2.6.2.3, причем геометрический коэффициент трубы l в данном случае определяется как отношение толщины стенки к среднему радиусу поперечного сечения (l = s/r).

Расчет по настоящему пункту выполняется для сечений всех трубопроводных участков, сходящихся в данном тройниковом узле (рис.5.12).

 

 

Рис.5.12. Расчетные сечения тройникового узла

 

5.2.6.3. Определение напряжений на этапе II полного расчета

5.2.6.3.1. На этапе II полного расчета определяются эквивалентные напряжения, соответствующие наиболее напряженным точкам поперечных сечений трубопровода.

5.2.6.3.2. Для прямолинейных труб и криволинейных труб с l ³ 1,0 используется формула

.

Напряжение sпр и t вычисляются соответственно по формулам (3) и (4), а напряжение szMN - по формуле

.                                           (5)

Коэффициент перегрузки kп принимается по п.5.2.6.2.4, а коэффициент прочности сварного соединения при изгибе jbw - по данным раздела 4.2 Норм.

5.2.6.3.3. Для криволинейных труб (при любом значении l) вычисления производятся по следующим четырем формулам:

        (6)

Для оценки прочности берется большее из четырех значений.

Величина Mэ определяется по формуле

,

где а - начальная эллиптичность (овальность) поперечного сечения, %; значение ее принимается согласно п.5.2.6.8.

Изгибающий момент Mx действует в плоскости оси криволинейной трубы, а момент My - в плоскости, перпендикулярной к плоскости оси трубы (рис.5.13). Момент Mx считается положительным, если направлен в сторону увеличения кривизны оси трубы.

 

 

Рис.5.13. Изгибающие моменты в сечении криволинейной трубы

 

Коэффициент cэ используется для учета уменьшения напряжений, обусловленных начальной эллиптичностью сечения, вследствие ползучести. Его можно определять по формуле

cэ = 0,6c,

причем c принимается по рис.5.5.

Коэффициент kп принимается согласно п.5.2.6.2.4, а коэффициент  при Mx > 0 и  принимается ; в остальных случаях .

Коэффициенты gm и bm определяются по п.5.2.6.6. Напряжение sпр подсчитывается по формуле (3).

5.2.6.3.4. Для равнопроходного или почти равнопроходного тройникового узла (отношение большего наружного диаметра к меньшему не более 1,3) вычисляется эквивалентное напряжение по формуле

,                          (7)

причем коэффициент gm находится по п.5.2.6.6 в зависимости от геометрического параметра l, определяемого в данном случае как отношение толщины стенки к среднему радиусу поперечного сечения (l = s/r), и параметра w, определяемого по формуле

.

Расчет по формуле (7) выполняется для сечений всех трех трубопроводных участков, сходящихся в данном тройниковом узле (эти сечения обозначены на рис.5.12).

Входящее в формулу (7) значение напряжения sпр определяется по формуле (3).

Подсчет sпр, W, F производится по геометрическим размерам, соответствующим расчетным сечениям. Значения силовых факторов принимаются в соответствии с рис.5.14.

 

 

Рис.5.14. Силовые факторы в поперечном сечении тройникового узла

 

5.2.6.4. Определение напряжений на этапе III полного расчета

5.2.6.4.1. На этапе III полного расчета определяются эквивалентные максимальные условные напряжения цикла  (размахи эквивалентных напряжений, соответствующие переходу трубопровода из холодного состояния в рабочее и обратно).

5.2.6.4.2. Для прямолинейных труб и криволинейных труб с l ³ 1,0 применяется формула

.                                         (8)

Напряжения sпр, t, szMN вычисляются соответственно по формулам (3), (4), (5).

5.2.6.4.3. Для криволинейных труб (при любом значении l) вычисления производятся по следующим формулам:

            (8а)

Для оценки прочности принимается наибольшее из значений, получаемых по этим формулам.

При Мх > 0 (см.п.5.2.6.3.3) и  ; в остальных случаях .

Величины Мэ, gm, bm, sпр, kп, W определяются так же, как при расчете по формулам (6).

5.2.6.4.4. Для равнопроходного или почти равнопроходного тройникового узла (отношение большего наружного диаметра к меньшему не более 1,3) также производится расчет для сечений всех трех участков, сходящихся в тройниковом узле (рис.5.12), по формуле

.                           (9)

Определение входящих сюда величин выполняется так же, как при вычислении их по формуле (7).

5.2.6.5. Определение напряжений на этапе IV полного расчета

5.2.6.5.1. На этапе IV полного расчета определяются эквивалентные напряжения, соответствующие наиболее напряженным точкам сечений трубопровода.

5.2.6.5.2. Для прямолинейных труб и криволинейных труб с l ³ 1,0 используется формула

.                                                    (10)

Значения t и szMN определяются по формулам (4) и (5).

5.2.6.5.3. Для криволинейных труб (при любом значении l) вычисления производятся по формулам:

             (10а)

Для оценки прочности берется большее из получаемых по этим формулам значений.

Коэффициент cэ1 определяется по формуле

cэ1 = - 0,7d,

где d - коэффициент, принимаемый по рис.5.6.

В случае когда Мх < 0 и , принимается ; в противном случае .

Величины, входящие в приведенные формулы, определяются так же, как при расчете по формулам (6). Величина Мэ определяется при рабочем давлении.

5.2.6.5.4. Для равнопроходного или почти равнопроходного тройникового узла (отношение большего наружного диаметра к меньшему не более 1,3) определяются также эквивалентные напряжения для сечений всех трех участков, сходящихся в тройниковом узле (см. рис.5.12), по формуле

.                                (11)

Определение входящих сюда величин выполняется так же, как при вычислении их по формуле (7); см. также п.5.2.6.7.

5.2.6.6. Коэффициенты интенсификации напряжений gm и bm определяются по формулам:

;

.

Коэффициенты Ai2 вычисляются по следующим формулам:

;

;

;

;

.

Величины kp, a1, a2, a3, a4, b определяются по формулам (1) и (2).

5.2.6.7. Для расчета трубопровода по этапу IV коэффициенты gm и bm должны определяться при p = 0.

5.2.6.8. В том случае, когда отсутствуют данные о фактической величине начальной эллиптичности сечений криволинейных труб, расчет напряжений в них по пп.5.2.6.3.3, 5.2.6.4.3, 5.2.6.5.3 производится как при a = 0, так и при возможном наибольшем значении a, принимаемом по техническим условиям на изготовление или по согласованию с заводом-изготовителем.

Если величина начальной эллиптичности a £ 3%, то в расчете напряжений эллиптичность не учитывается (в расчетных формулах применяется a = 0).

Для низкотемпературных трубопроводов значение начальной эллиптичности сечения  следует принимать с увеличением в 1,8 раза.

5.2.6.9. Напряжения в секторных коленах с числом секторов более двух можно определять по приведенным формулам для криволинейных труб. При определении значения геометрического параметра l для секторного колена величина радиуса R вычисляется по п.5.2.5.8.

 

5.2.7. Критерии прочности

 

5.2.7.1. Эффективные напряжения, вычисляемые на этапе I полного расчета трубопровода (п.5.2.6.2), должны удовлетворять условию

sэф £ 1,1[s].

Напряжение [s] определяется по данным раздела 2 Норм в зависимости от рабочей температуры tp соответствующего участка трубопровода.

5.2.7.2. Эквивалентные напряжения, вычисляемые на этапах II и IV полного расчета (пп.5.2.6.3, 5.2.6.5), должны удовлетворять условию:

sэкв £ 1,5[s].

 

Величина [s] принимается по данным раздела 2 Норм в зависимости от соответствующей температуры участка трубопровода (tp - для расчета по этапу II и tx - для расчета по этапу IV).

5.2.7.3. Эквивалентные максимальные условные напряжения, вычисляемые на этапе III полного расчета (см. п.5.2.6.4), должны удовлетворять условию

.

Значение допускаемой амплитуды напряжения [sa] принимается по рис 5.15 в зависимости от числа циклов нагружения (пусков) трубопровода за весь период эксплуатации.

 

 

Рис.5.15. Амплитуды допускаемых напряжений:

    

1 - прямолинейные и криволинейные трубы и секторные колена (при расчете  по формуле (8)) и тройниковые узлы (при расчете  по формуле (9)) из углеродистой или легированной (не аустенитной) стали при рабочей температуре до 370 °С; 1 - те же элементы из аустенитной стали при рабочей температуре до 450 °С; 2 - криволинейные трубы и секторные колена (при расчете  по формулам (8а)) из углеродистой или легированной (не аустенитной) стали при рабочей температуре до 370 °С; 2 - те же элементы из аустенитной стали при рабочей температуре до 450 °С

 

Для трубопроводов с рабочей температурой 150-250 °С число циклов нагружения следует принимать с запасом (с превышением над ожидаемым действительным значением) не менее 50%, а при более высокой температуре - с запасом не менее 100%. Если расчетное число циклов нагружения трубопровода менее 3000, то принимается значение [sa] при 3000 циклах.

Под циклом нагружения трубопровода понимается периодически повторяющийся режим его работы, включающий нагрев, эксплуатацию при постоянной температуре и отключение с полным охлаждением. Следовательно, количество циклов нагружения трубопровода равно числу включений его в работу из холодного состояния или числу отключений его на длительное время.

 

5.2.8. Применение и учет монтажной растяжки

 

5.2.8.1. В высокотемпературных трубопроводах монтажная (холодная) растяжка применяется для повышения их прочности и уменьшения передаваемых усилий на оборудование в рабочем состоянии, а в низкотемпературных трубопроводах - для уменьшения нагрузки на оборудование в рабочем состоянии.

5.2.8.2. Применять монтажную растяжку необязательно. Вопрос о целесообразности ее применения, а также о ее величине и месте выполнения следует решать с учетом конкретных особенностей трубопровода.

5.2.8.3. Рекомендуется применять монтажную растяжку в высокотемпературных трубопроводах, обладающих локализаторами ползучести, т.е. элементами, в которых может происходить интенсивное накопление деформации ползучести.

5.2.8.4. Величину монтажной растяжки в низкотемпературных трубопроводах рекомендуется назначать не более 60% от воспринимаемого (компенсируемого) температурного расширения, а в высокотемпературных трубопроводах - не более 100d %, где d - коэффициент, представленный графически на рис.5.6.

5.2.8.5. Учет монтажной растяжки в расчете трубопровода допускается лишь в том случае, когда гарантируется выполнение ее в строгом соответствии с данными проекта. Для низкотемпературного трубопровода монтажная растяжка учитывается на этапах II и IV полного расчета, а для высокотемпературного трубопровода - только на этапе II (исключение см. п.5.2.8.8).

5.2.8.6. При применении монтажной растяжки с негарантируемым качеством выполнения рекомендуется производить расчет трубопровода без учета монтажной растяжки (ее положительный эффект относится к неучитываемым факторам, повышающим запас надежности). При этом требуется, однако, обосновать положительное значение применяемой монтажной растяжки.

5.2.8.7. Учет монтажной растяжки в расчете высокотемпературного трубопровода по этапу II допускается только при определении передаваемой нагрузки на оборудование. В этом случае расчет должен выполняться в двух вариантах:

с учетом монтажной растяжки и при введении действительной температуры нагрева tн (расчет для определения усилий воздействия на оборудование);

без учета монтажной растяжки и при введении фиктивной температуры tр.ф согласно п.5.2.3.6 (расчет для оценки прочности трубопровода).

При этом требуется обосновать благоприятное воздействие монтажной растяжки на напряженное состояние трубопровода в рабочем состоянии.

5.2.8.8. Если для высокотемпературного трубопровода величина монтажной растяжки превышает величину, указанную в п.5.2.8.4, то необходимо (независимо от качества выполнения монтажной растяжки) выполнить дополнительный расчет трубопровода по этапу IV с учетом монтажной растяжки, но без учета саморастяжки (т.е. при тех же расчетных условиях, которые принимаются при выполнении расчета низкотемпературного трубопровода по этапу IV).

5.2.8.9. Усилия воздействия низкотемпературного трубопровода на оборудование в холодном состоянии можно определять по формуле п.5.2.4.3 и при учете монтажной растяжки.

5.2.8.10. Учет монтажной растяжки в расчете трубопровода производится путем введения соответствующих взаимных смещений стыкуемых сечений (т.е. смещений стыкуемых сечений при выполнении растяжки).

 

 

ПРИЛОЖЕНИЕ

Справочное

 

Значение коэффициента линейного расширения, коэффициента теплопроводности, модуля упругости и коэффициента температуропроводности

 

Марки сталей

Температура, °С

 

20

100

150

200

250

300

350

400

450

500

600

 

Коэффициент линейного расширения at × 10-6, 1/К

Ст3, 10, 20, 20К, 22К, 09Г2С, 15ГС, 16ГС, 12МХ, 15ХМ, 12Х1МФ, 15Х1М1Ф

11,5

11,9

12,2

12,5

12,8

13,1

13,4

13,6

13,8

14,0

14,4

Х18Н10Т, Х18Н12Т, 12Х11В2МФ

16,4

16,6

16,8

17,0

17,2

17,4

17,6

17,8

18,0

18,2

18,5

 

Коэффициент теплопроводности lt, Вт/(м·К)

Ст3, 20, 20К, 22К

44,0

44,0

43,0

42,0

40,0

39,0

38,0

36,0

34,0

30,0

 

12МХ, 15ХМ, 12Х1МФ

38,0

38,0

37,0

36,5

36,0

35,5

35,0

34,0

33,0

30,0

 

 

Модуль упругости Et × 105, МПа

Ст3, 20, 20К, 22К

2,04

2,01

1,99

1,96

1,94

1,88

1,84

1,79

1,73

1,63

-

09Г2С, 16ГС, 12ХМ, 15ХМ, 12МХ, 12Х1МФ, 15Х1М1Ф

2,14

2,09

2,06

2,04

2,01

1,99

1,94

1,88

1,84

1,79

1,65

Х18Н10Т, Х18Н12Т, 12Х11В2МФ

2,09

2,04

1,99

1,94

1,88

1,84

1,79

1,73

1,99

1,68

1,63

 

Коэффициент температуропроводности at, мм2

Ст3, 20, 20К, 22К

13,0

13,0

13,0

12,0

11,5

11,0

10,0

9,0

8,5

8,0

-

12МХ, 15ХМ, 12Х1МФ, 15Х1М1Ф

11,0

11,0

11,0

10,0

9,5

9,0

8,5

8,0

7,5

7,0

6,0

 

ПРИЛОЖЕНИЕ

Справочное

 

Средние коэффициенты линейного расширения a × 106, 1/°С

 

Группы сталей

Интервал температур, °С

 

20-50

20-100

20-150

20-200

20-250

20-300

20-350

20-400

20-450

20-500

20-550

20-600

20-650

Углеродистые и низколеги-рованные

11,5

11,9

12,2

12,5

12,8

13,1

13,4

13,6

13,8

14,0

14,2

14,4

-

Хромистые нержавеющие

10,0

10,3

10,6

10,8

11,0

11,2

11,4

11,5

11,7

11,8

11,9

12,0

-

Аустенитные хромоникеле-вые

16,4

16,6

16,8

17,0

17,2

17,4

17,6

17,8

18,0

18,2

18,4

18,5

18,7

 

ПРИЛОЖЕНИЕ

Справочное

 

Модуль упругости E · 10‑6, МПа

 

Группы сталей

Температура, °С

 

20

100

200

300

400

500

550

600

650

Углеродистые С < 0,25%

2,00

1,95

1,90

1,80

1,70

1,60

-

-

-

Низколегированные С < 0,25%

2,06

2,01

1,96

1,91

1,81

1,71

1,67

1,62

-

Высокохромистые

2,16

2,11

2,06

1,96

1,86

1,76

1,71

1,67

1,57

Аустенитные хромоникелевые

2,01

1,96

1,86

1,76

1,67

1,62

1,60

1,57

1,51

 

ПРИЛОЖЕНИЕ

Справочное

 

Средние значения коэффициента теплопроводности lt , Вт/(м·К)

 

Группы сталей

Интервал температур, °С

 

20-100

20-200

20-300

20-400

20-500

20-600

20-700

Углеродистые С < 0,25%

53

51

49

46

43

39

36

Низколегированные С < 0,25%

44

43

42

40

37

35

32

Аустенитные хромоникелевые

16

17

19

21

23

25

37

 

ПРИЛОЖЕНИЕ

Справочное

 

Среднее значение коэффициента температуропроводности at , мм2

 

Группы сталей

Температура,°С

 

20

100

200

300

400

500

600

Углеродистые С < 0,25%

13,0

13,0

12,0

11,0

9,0

8,0

-

Низколегированные С < 0,25%

11,0

11,0

10,0

9,0

8,0

7,0

6,0

 

6. РАСЧЕТ НА ПРОЧНОСТЬ ЖАРОТРУБНЫХ И ДЫМОГАРНЫХ КОТЛОВ

 

6.1. Общие положения

 

6.1.1. Настоящая методика распространяется на горизонтальные и вертикальные конструкции котлов с двумя фиксированными трубными решетками, в которых имеются жаровые трубы, жаровые и газовые трубы одновременно или газовые трубы, по которым проходят продукты сгорания топлива или отходящие газы химического, металлургического и других производств.

Нормы устанавливают методы расчета трубных решеток, жаровых труб, огневых поворотных камер, дымогарных труб, днищ, деталей укрепления при проектировании новых котлов; они могут быть использованы для проведения поверочных расчетов элементов котлов,  находящихся в эксплуатации, а также для оценки их долговечности при переменных режимах работы.

В нормах учитывается действие двух основных нагружающих факторов: внутреннего давления среды в межтрубном пространстве и различных температурных расширений деталей котла. Для трубных решеток толщиной до 30 мм температурные напряжения могут не учитываться.

6.1.2. Основой расчета является оценка прочности по следующим предельным состояниям:

разрушение (вязкое и хрупкое);

появление микротрещин при циклическом нагружении.

6.1.3. Все формулы для расчета основаны на гипотезе о линейно-упругом деформировании металла. Вследствие этого напряжения, превышающие по величине предел упругости и текучести материала, являются условно-упругими.

6.1.4. Расстояния между укрепляющими элементами трубной решетки (рис.6.1) устанавливаются с учетом двух основных нагружающих факторов:

действия внутреннего давления на неукрепленные участки плоской стенки трубной решетки;

усилия изгиба от разности температурных удлинений соседних труб или других элементов.

 

 

Рис.6.1: 1 - угловая связь; 2 - анкерная тяга; 3 - жаровая труба;

4 - дымогарные трубы; 5 - обечайка корпуса

 

6.1.5. Расчетные формулы, связывающие максимальные напряжения в зоне просветов а, b, e, h, c, g (см. рис.6.1) с толщиной трубной решетки, с размерами указанных просветов и с температурными смещениями, получены на основании следующей упрощенной расчетной схемы: кольцевая пластина жестко защемлена по наружному и внутреннему контурам и испытывает относительное смещение кромок от температурных расширений соответствующих продольных связей на величину w.

 

6.2. Условные обозначения

 

6.2.1. Основные обозначения параметров, используемых при расчете на прочность (расчетное давление, допускаемое напряжение, номинальная толщина стенки, прибавки к расчетной толщине), указаны в подразделе 1.1.

6.2.2. Просветы - это наименьшие расстояния между укрепляющими элементами трубной решетки (см. рис.6.1); их обозначения представлены в табл.6.1.

 

Таблица 6.1

 

Символ

Название

Единица измерения

a

Просвет между жаровой трубой и обечайкой корпуса

мм

b

Просвет между жаровой трубой и наружной поверхностью наиболее близко расположенной к ней дымогарной трубы

мм

c

Просвет между обечайкой корпуса и наружной поверхностью наиболее близко расположенной к ней дымогарной трубы

мм

d

Просвет между жаровой трубой и краем угловой связи

мм

g

Просвет между дымогарными трубами и краем угловой связи

мм

h

Минимальное расстояние между наружной окружностью анкерной тяги в плане и ближайшей подкрепляющей деталью

мм

 

6.2.3. Обозначение параметров расчетной кольцевой пластины представлены в табл.6.2.

 

Таблица 6.2

 

Символ

Название

Единица измерения

r0

Внутренний радиус расчетной кольцевой пластины

мм

r1

Наружный радиус расчетной кольцевой пластины

мм

s

Толщина расчетной кольцевой пластины, равная номинальной толщине стенки трубной решетки

мм

A

Безразмерный коэффициент заделки расчетной кольцевой пластины, применяемый при расчете на температурные расширения связей

мм

 

6.2.4. Обозначения расчетной нагрузки и деформации, а также физические константы металла рассматриваемых элементов представлены в табл.6.3.

 

Таблица 6.3

 

Символ

Название

Единица измерения

p

Расчетное давление, равное давлению среды в межтрубном пространстве

МПа

w

Смещение внутренней кромки расчетной пластины относительно ее наружной кромки при температурных расширениях продольных связей, соответствующих этим кромкам

мм

Et

Модуль продольной упругости при расчетной температуре

МПа

m

Модуль поперечной упругости

 

[s]

Номинальное допускаемое напряжение при расчетной температуре

МПа

 


6.3. Расчетная температура

 

6.3.1. Область применения

 

6.3.1.1. Температура металла трубной решетки и связей определяется на основании уравнений теплопередачи и данных теплового расчета котла, который производится в соответствии с нормами теплового расчета.

6.3.1.2. Формулы и графики для определения средних и максимальных температур металла трубной решетки получены для труб Da´s = 32´3 и 50´3 мм с разбивкой отверстий по треугольнику. Для других диаметров вводится поправочный коэффициент на диаметр труб.

6.3.1.3. Расчетная и максимальная температуры металла трубной решетки определяются для безнакипного режима работы котла.

При наличии накипи вычисленные согласно п.6.3.4 значения температур должны быть увеличены на 40%.

6.3.1.4. Расчетная и максимальная температуры металла труб поверхностей нагрева определяются с учетом накипи согласно п.6.3.3.

 

6.3.2. Условные обозначения

 

При определении температурного состояния плоских днищ используются следующие параметры, представленные в табл.6.4.

 

Таблица 6.4

 

Символ

Название

Единица измерения

1

2

3

Da

Наружный диаметр трубы

мм

Bi

Критерий Био

-

Kd

Поправочный коэффициент на диаметр трубы

-

Kt

Поправочный коэффициент, учитывающий шаг между трубами

-

a2

Коэффициент теплоотдачи

Вт/(м2·К)

b

Отношение наружного диаметра трубы к внутреннему диаметру

-

lt

Коэффициент теплопроводности

Вт/(м·К)

lq

Коэффициент теплопроводности накипи

Вт/(м·К)

q

Безразмерная температура

-

s

Толщина стенки трубы

мм

sq

Толщина накипи

мм

q

Средний тепловой поток через рассматриваемую поверхность нагрева

Вт/м2

ts

Температура насыщения

°С

 

6.3.3. Температура металла труб поверхностей нагрева

 

6.3.3.1. За расчетную температуру принимается средняя температура стенки трубы.

6.3.3.2. Расчетная температура стенки трубы определяется по формуле

,

где q и a2 определяются из теплового расчета котла;

lq = 1,163 Вт/(м·К);

sq = 0,5 мм (при нормальных условиях эксплуатации);

sq = 1,5 мм (при нарушении нормальных условий эксплуатации).

6.3.3.3. Максимальная температура стенки трубы

.

6.3.3.4. Температура металла корпуса и сплошных анкерных тяг принимается равной температуре насыщения.

 

6.3.4. Температура металла трубной решетки

 

6.3.4.1. За расчетную температуру металла трубной решетки принимается среднеарифметическое значение температур наружной и внутренней поверхностей плоского днища.

6.3.4.2. Расчетная температура tpl трубной решетки определяется по формуле

,

где Kd = 1 - для труб диаметром Da = 32 мм;

Kd = 0,875 - для труб диаметром Da = 50 мм;

Kd = 0,8 - для труб диаметром Da = 60 мм.

Величины Kt и qm определяются по рис.6.2. и 6.3.

 

 

Рис.6.2

 

Критерий Био для трубной решетки определяется по формуле

.

Критерий Био для трубы определяется по формуле

.

6.3.4.3. Внутренняя поверхность трубы в сечении входа газов имеет максимальную температуру.

 

Рис.6.3

 

6.3.4.4. Максимальная температура трубной решетки равна

,

где значение qmax находим по рис.6.4.

6.3.4.5. При наличии изоляции расчет средней температуры и максимальной температуры tplmax производится согласно пп.6.3.4.2 и 6.3.4.4, в которых qm и qmax определяются по рис.6.3 и 6.4 при Bipl = 0.

 

 

Рис.6.4

 

6.3.4.6. При наличии выступающих в газовый объем концов труб высотой Dh максимальная температура трубной решетки определяется по формуле

,

где  находим по рис.6.5;

Kd, Kt определяются согласно п.6.3.4.2.

 

Рис.6.5

 

6.3.4.7. Расчетная температура  трубной решетки при наличии выступающих в газовый объем концов труб определяется по формуле

,

где  находим по рис.6.6.

 

 

Рис.6.6

 

6.3.4.8. Максимальные температуры стенок, вычисленные согласно пп.6.3.3.3, 6.3.4.4, 6.3.4.6, сравниваются с предельно допустимой температурой для выбранной марки стали, установленной Правилами устройства и безопасной эксплуатации паровых и водогрейных котлов.

6.3.4.9. Если при определении расчетных температур стенок трубной решетки температура окажется ниже температуры среды, то в этом случае принимается температура среды.

 

6.3.5. Температура металла жаровой трубы и огневой поворотной камеры

 

6.3.5.1. За расчетную температуру принимается средняя температура стенки, вычисляемая по следующим приближенным формулам:

для гладких жаровых труб

t = ts + 4s + 30°С,

для волнистых жаровых труб

t = ts + 5s + 30°С,

для огневой поворотной камеры

t = ts + 3s + 30°С,

В топках, работающих на газообразном или жидком топливе, не допускается превышать тепловую нагрузку жаровой трубы:

теплонапряжение сечения топки qF = 250 кВт/м2;

теплонапряжение топочного объема qV = 1000 кВт/м2.

6.3.5.2. Вычисленные согласно пп.6.3.3, 6.3.4 и 6.3.5 расчетные температуры металла труб и трубной решетки используются для определения допускаемого напряжения [s] согласно разделу 2 Норм.

 

6.4. Выбор основных размеров трубной решетки, днищ, обечаек и труб

 

6.4.1. Условные обозначения

 

6.4.1.1. В формулах для расчета трубных решеток приняты обозначения, представленные в табл.6.5.

 

Таблица 6.5

 

Символ

Название

Единица измерения

1

2

3

DF

Внутренний диаметр жаровой трубы (для конической трубы - средний внутренний диаметр, для волнистой трубы - наименьший внутренний диаметр)

мм

DFa

Наружный диаметр жаровой трубы

мм

D

Внутренний диаметр корпуса или отбортовки днища

мм

LF

Длина жаровой трубы или расстояние между соседними кольцами жесткости

мм

R

Внутренний радиус сферической части днища

мм

l1

Расстояние между центрами соседних связей в одном ряду

мм

l2

Расстояние между рядами связей

мм

t1, t2

Расстояние между центрами связей при неравномерном их расположении

мм

d0

Диаметр наибольшей окружности, которая может быть вписана по центрам связей, расположенных на стенке

мм

d

Диаметр отверстия в трубной решетке для анкерной связи или анкерной трубы

мм

c

Прибавка к расчетной толщине стенки

мм

t0max, t1max

Максимальная для данного режима работы котла средняя по длине и толщине стенки температура металла продольных связей, соответствующих внутренней и наружной кромкам расчетной кольцевой пластины

°С

a0, a1

Коэффициент линейного расширения металла этих же продольных связей в диапазоне температуры 20 °С - tmax

1/°С

L

Расчетная длина продольных связей, равная половине расстояния между трубными решетками

мм

tpl

Средняя температура металла трубной решетки

°С

sв

Изгибное напряжение в трубной решетке

МПа

 

6.4.2. Расчет плоских стенок и трубной решетки

 

6.4.2.1. Номинальная толщина плоской стенки, укрепленной распорными болтами, связями, анкерными трубами или косынками, должна быть не менее определенной по одной из следующих формул:

при равномерном размещении анкерных болтов, связей или труб (рис.6.7)

;

 

 

Рис.6.7

 

при неравномерном размещении анкерных болтов, связей или труб (рис.6.8)

;

 

 

Рис.6.8

 

при укреплении плоской стенки угловыми или иного вида креплениями

.

Коэффициент K принимается равным:

0,45 - при односторонней приварке болтов, связей или труб к стенке (рис.6.9);

0,42 - при двухсторонней приварке болтов, связей или труб к стенке;

0,39 - если распорные болты или связи имеют снаружи шайбу толщиной не менее 0,8 толщины укрепляемой стенки и наружным диаметром не менее 0,6 расстояния между центрами соседних связей (рис.6.10);

 

 

Рис.6.9

 

 

Рис.6.10

 

0,36 - если распорные болты или связи, ввернутые на резьбе, имеют снаружи гайку и шайбу толщиной не менее толщины укрепляемой стенки и наружным диаметром не менее 0,8 расстояния между центрами соседних укреплений.

Если плоская стенка имеет разные виды укреплений, то толщина ее должна приниматься наибольшей из вычисленных для разного вида укреплений.

6.4.2.2. Прибавка к расчетной толщине стенки должна приниматься в соответствии с подразделом 1.5.

6.4.2.3. При закреплении труб в трубной решетке с применением вальцовки толщина плоской стенки должна быть не менее определенной по формуле s = 0,125d + 5 мм, но не менее 13 мм.

6.4.2.4. После выбора толщины стенки проверяются максимально и минимально допустимые размеры просветов согласно пп.6.4.3 и 6.4.4.

Если значение просветов не соответствует установленным максимальным и минимальным значениям, то толщина стенки должна быть увеличена или уменьшена.

 

6.4.3. Наибольшие допустимые размеры неукрепленных участков трубной решетки

 

6.4.3.1. Диаметр наибольшей окружности, которая может быть вписана касательно к расположенным на трубной решетке связям, корпусу или трубам (рис.6.12), должен удовлетворять условию

.

 

 

Рис.6.11  

 

 

Рис.6.12: 1 - для просветов a и b; 2 - для просветов e и h

 

6.4.3.2. Размеры просветов (см. рис.6.1) между волнистой жаровой трубой и корпусом a, дымогарными трубами b, угловой связью e или анкерной тягой h должны удовлетворять условию

.

6.4.3.2.1. Коэффициент K1 при 0,1 £ r0/r1 < 0,8 определяется по рис.6.12 в зависимости от вида просвета (см. рис.6.1).

При 0,8 £ r0/r1 <1 коэффициент K1 для просветов a, b, e и h равен 0,58.

6.4.3.2.2. В случае укрепления трубной решетки анкерной тягой как при волнистой, так и при гладкой жаровой трубе для просвета h должно выполняться условие (см. рис.6.1)

,

где

6.4.3.3. Расчет по п.6.4.3.2 производится в зависимости от назначения расчета.

 

6.4.3.3.1. Если размеры a (или b, e, h), r0 и r1 заданы, то производится проверка выполнения условия п.6.4.3.2.

6.4.3.3.2. В том случае, когда при проектировании новых котлов требуется определить наибольшие допустимые размеры указанных просветов, расчет по п.6.4.3.2 ведется методом последовательных приближений.

При определении размеров a или b задается (или задано) значение r0.

В первом приближении размер просвета a или b принимается равным

 (или ) .

Определяется наружный радиус в первом приближении:    

(или ).

По отношению r0/r1 и графику на рис.6.12 находят значение  и определяют размер просвета и радиус  во втором приближении:

 (или ) .

(или ).

По отношению r0/ определяют новые значения , ,  и т.д.

Для просветов e и h в первом приближении принимают

 (или ) .

и расчет производят последовательными приближениями аналогично предыдущему случаю; при этом задано значение r1.

Радиусы  и , изображенные на рис.6.1, определяются на основании величин просветов, найденных в каждом приближении:

 (или );

 (или ).

Процесс приближения быстро сходится.

6.4.3.3.3. Вместо последовательных приближений можно задаваться меньшими размерами просветов по сравнению с их первоначальными значениями и производить проверку согласно п.6.3.3.2.

 

6.4.4. Наименьшее допустимое расстояние между укрепляющими деталями

трубной решетки

 

6.4.4.1. Для просветов a, b, e, h (гладкая жаровая труба), c, g (см. рис.6.1) должно выполняться условие

,

где K2 - коэффициент, зависящий от отношения r0/r1;

при 0,1 £r0/r1 < 0,8 K2 определяется по рис.6.13;

 

 

Рис.6.13

 

 

при 0,8 £r0/r1 < 1 K2 вычисляется по формуле

;

w- относительное смещение кромок расчетной кольцевой пластины, определяемое по формуле

,

здесь  - знак абсолютной величины.

6.4.4.1.1. Температуры t0max, t1max, tpl определяются согласно п.6.3.

Величины Et, a0, a1 определяют согласно приложению к главе 5; Et берется для металла решетки при температуре tpl; a0 и a1 определяются для металла продольных связей в интервале температур (20-t0max) и (20-t1max) соответственно.

6.4.4.1.2. Допускаемое напряжение [s] определяется для металла трубной решетки согласно разделу 2 при температуре tpl.

6.4.4.1.3. При определении размеров просветов a, b, c, e, g, h следует выбрать положение условной кольцевой пластины для каждого случая. Указания по выбору радиуса внутренней кромки пластины r0 приведены на рис.6.1. Например, для просвета a внутренней кромке пластины соответствует гладкая жаровая труба, а наружной кромке пластины - обечайка корпуса, для просвета g - кромка косынки и дымогарные трубы соответственно и т.д.

6.4.4.1.4. Значения коэффициента A в зависимости от вида просвета принимаются: 0,80 для просветов a, b; 0,75 для просвета c; 1,50 для просветов e, g; 1,00 для просвета h.

6.4.4.2. При проектировании новых котлов минимально допустимые размеры просветов проверяют по формуле

(или б, с, e, g, h)min =.

6.4.4.2.1. Коэффициент K3, зависящий от отношения r0/r1, при 0,1 £ r0/r1 <0,9 определяется по рис.6.14.

 

 

Рис.6.14

 

 

При 0,9 £ r0/r1 < 1 коэффициент K3 = 1,8.

6.4.4.2.2. После того как определены размеры просветов, определяют радиусы расчетной кольцевой пластины:

r0 = r1 - a (или b, c, e, g, h), если задан наружный радиус;

r1 = r0 + a (или b, c, e, g, h), если задан внутренний радиус.

6.4.4.2.3. Для полученных размеров расчетных пластин проверяется выполнение условия п.6.4.4.1. Если это условие не выполняется, то размер просвета несколько увеличивают, определяют радиус расчетной кольцевой пластины согласно п.6.4.4.2.2 и повторяют проверку.

6.4.4.3. Если условие п.6.4.4.1 не выполняется, то производится расчет на малоцикловую усталость согласно подразделу 6.6.

 

6.4.5. Толщина стенки выпуклых днищ

 

6.4.5.1. Номинальная толщина стенки выпуклого днища газотрубного котла должна быть не менее определенной по формуле

s = sR + c,

где sR = pR/[s].

Формула пригодна при соблюдении условия R = 1,2D.

6.4.5.2. Величина прибавки  должна определяться согласно подразделу 1.5 Норм.

Утонение стенки при штамповке днища не должно учитываться в том случае, если оно не превышает 5% расчетной толщины.

В случае превышения расчетная толщина днища должна быть увеличена на разницу между фактической толщиной и пятипроцентным допускаемым утонением.

6.4.5.3. Толщина стенки, вычисленная по п.6.4.5.1, должна округляться до ближайшего большего размера листа, имеющегося в стандарте на сортамент.

Во всех случаях номинальная толщина стенки днища должна приниматься не менее 6,0 мм.

 

6.4.6. Расчет жаровых труб

 

6.4.6.1. Номинальная толщина стенки гладкой жаровой трубы должна быть не менее определенной по формуле

s = sR + c,

где .

Значение коэффициента KF следует принимать:

3,10 - для горизонтальных жаровых труб;

1,85 - для вертикальных жаровых труб.

При наличии жестких креплений в поперечном направлении за расчетную длину LF следует принимать наибольшее расстояние между соседними креплениями (рис.6.15).

 

 

Рис.6.15

 

Вычисленная согласно п.6.4.6.1 номинальная толщина стенки должна округляться до ближайшего большего размера листа, имеющегося в стандарте на сортамент.

Номинальная толщина стенки волнистой жаровой трубы должна быть не менее определенной по формуле

s = sR + c,

где sR = pDF/[s] (для волн высотой 50 мм и более).

Прибавка c должна определяться согласно подразделу 1.5 Норм, но должна быть не менее 2 мм.

6.4.6.2. Номинальная толщина стенки жаровых труб должна приниматься не менее 7 мм и не более 20 мм.

6.4.6.3. Допустимое рабочее давление при контрольных расчетах жаровых труб определяется по следующим формулам:

для гладких труб

;

для волнистых труб ( с высотой волны 50 мм и более)    

.

 

6.4.7. Расчет дымогарных труб

 

6.4.7.1. Номинальная толщина стенки прямой трубы с наружным диаметром не более 200 мм, находящейся под наружным давлением, должна быть не менее определенной по формуле

,

где величина прибавки c должна приниматься согласно подразделу 1.5 Норм.

6.4.7.2. Номинальная толщина стенки труб, находящихся под внутренним давлением, определяется согласно разделу 3 Норм.

6.4.7.3. Номинальная толщина стенки труб с учетом наружного давления должна быть не менее значений, приведенных в табл. 6.6.

 

Таблица 6.6

 

Da, мм

£ 38

£ 51

£ 70

£ 90

£ 108

> 108

S, мм

2,5

3,0

3,7

4,5

5,5

6,0

 

6.4.8. Расчет обечаек корпуса

 

6.4.8.1. Номинальная толщина стенки обечаек корпуса определяется согласно разделу 3 Норм.

 

6.5. Выбор основных размеров анкерных и угловых связей

 

6.5.1. Условные обозначения

 

Дополнительные обозначения представлены в табл. 6.7.

 

Таблица 6.7

 

Символ

Название

Единица измерения

F

Площадь трубной решетки, укрепляемой данной анкерной связью или трубой

мм2

Fv

Расчетная площадь вальцованной поверхности

мм2

Fp

Площадь нагрузки на одну связь или трубу

мм2

f

Площадь поперечного сечения анкерной связи или укрепляющей трубы

мм2

q1

Величина усилия, приходящаяся на 1 мм периметра развальцованной трубы

Н/мм

q2

Допустимое усилие на вальцованной поверхности

МПа

lm

Длина развальцованного участка

мм

 

6.5.2. Расчет анкерных связей и труб

 

6.5.2.1. Площадь сечения анкерной связи или анкерной трубы, подвергающейся растяжению, должна удовлетворять условию

.

Если труба подвергается сжатию, то вместо наружного диаметра трубы Da следует использовать внутренний D.

6.5.2.2. Площадь сечения угловой анкерной связи должна удовлетворять условию

,

где a - угол между угловой анкерной связью и трубной решеткой.

6.5.2.3. Площади F, укрепляемые анкерными связями или трубами, определяются по рис.6.16.

 

 

Рис.6.16: a - разбивка по треугольнику; b - разбивка по прямоугольнику

 

 

6.5.2.4. Если плоская стенка укрепляется только развальцованными трубами, то величина усилия q1 определяется по формуле

,

которая должна удовлетворять условию:

q1 = 30 Н/мм при развальцовке труб без отбортовки концов и без канавок;

q1 = 50 Н/мм при развальцовке труб без отбортовки концов, но при наличии двух канавок с общей высотой не менее толщины стенки трубы;

q1 = 70 Н/мм при развальцовке труб с отбортовкой обоих концов.

6.5.2.5. Необходимая длина развальцованного участка трубы lm должна определяться из условия

,

где Fm = (Da - D)lm;

q2 - допустимое усилие на вальцованной поверхности:

150 МПа - при развальцовке труб без отбортовки и без канавок;

300 МПа - при развальцовке труб без отбортовки, но при наличии канавок с общей высотой не менее толщины стенки трубы;

400 МПа - при развальцовке труб с отбортовкой.

6.5.2.6. Расчетная площадь вальцованной поверхности должна удовлетворять условию

Fm £ 0,1Dalm.

Длина развальцованного участка lm должна быть не менее 12 мм; в расчете должна приниматься не более 40 мм.

6.5.2.7. При использовании сварки для закрепления труб и анкерных связей в трубной решетке расчетное сечение сварного шва D (рис.6.17) должно быть не менее определенного по формуле

,

где [s] - должна приниматься по материалу трубы или решетки с наименьшим значением расчетной характеристики прочности при расчетной температуре стенки.

 

 

Рис.6.17

 

Кроме того, для указанных типов сварных швов должно выполняться условие D ³ s.

6.5.2.8. Если закрепление трубы осуществляется на вальцовке с использованием сварного шва по типу 1 (рис.6.17) для обеспечения дополнительной плотности, то сечение шва D должно быть не более 5 мм.

 

6.5.3. Размеры угловых связей

 

Размеры угловых связей (косынок) должны удовлетворять соотношению (см. рис.6.1)                H ³ 1,8B.

Допускается применение косынок без уменьшения ширины средней части.


6. 6. Поверочный расчет на усталость

 

6.6.1. Условные обозначения

 

6.6.1.1. Условные обозначения при расчете на малоцикловую усталость принимаются согласно подразделу 5.1.5 Норм.

Дополнительные обозначения:

t0min, t1min - температура металла продольных связей соответственно внутренней и наружной кромок расчетной кольцевой пластины (минимальная для данного режима работы котла, средняя по длине и толщине стенки), °С.

Остальные обозначения - согласно подразделу 6.2.

 

6.6.2. Требования к расчету на усталость

 

6.6.2.1. Расчет на усталость производится с учетом всех режимов эксплуатации котла, характеризующихся минимальными (t0min, t1min) и максимальными (t0max, t1max) температурами металла продольных связей в начале и конце цикла колебаний, а также числом циклов каждого типа.

Примером циклического нагружения котла являются циклы типа пуск-останов, при которых нагрузка изменяется от нуля, а температура металла от 20 °С до номинальной величины и обратно.

Циклами второго типа могут служить циклические изменения нагрузки от заданного промежуточного значения до номинальной величины и обратно.

6.6.2.2. Расчет производится для всех просветов, имеющихся на трубной решетке и поворотной огневой камере.

6.6.2.3. Местные температурные напряжения в данном методе расчета не учитываются; интенсивность напряжений определяется только по изгибной составляющей напряжения                  Dse = sB. Однако понятие интенсивности напряжений сохраняется для более удобного применения при оценке долговечности трубной решетки.

 

6.6.3. Определение размаха интенсивностей напряжений

 

6.6.3.1. Размах интенсивностей напряжений вычисляется по формуле

,

где jw = 0,8 - коэффициент снижения циклической прочности для углового сварного соединения вварки плоского днища в обечайку корпуса котла, плоского днища в обечайку огневой поворотной камеры, а также соединения плоского днища с жаровой трубой.

6.6.3.1.1. Относительное смещение кромок в рассматриваемом режиме

,

где  - знак абсолютной величины.

6.6.3.1.2. Температуры t0max, t0min, t1max, t1min определяются согласно подразделу 6.3.

6.6.3.1.3. Остальные величины в формуле п.6.6.3.1 определяются согласно п.6.4.4.1.

На основании найденной величины размаха интенсивностей напряжений Dse производится оценка долговечности в соответствии с подразделом 5.1.5 Норм.

 

6.7. Допустимое давление в котле при наличии отклонений

от круглости жаровой трубы

 

6.7.1. Условные обозначения

 

Дополнительные обозначения:

DFmax, DFmin - максимальный и минимальный наружные диаметры поперечного сечения жаровой трубы, мм;

a - коэффициент некруглости,%;

e - максимальный размер уплощения (рис.6.18) поперечного сечения жаровой трубы, мм.

sf - фактическая толщина стенки жаровой трубы, мм.

Остальные обозначения - согласно табл.6.1 и 6.2.

 

 

Рис.6.18

 

6.7.2. Определения

 

В Нормах рассматриваются следующие отклонения от круглого поперечного сечения трубы:

овальность поперечного сечения, определяемая коэффициентом некруглости:

;

уплощение поперечного сечения (см. рис.6.18), определяемое приведенным коэффициентом некруглости:

.

 

6.7.3. Допустимое отклонение от круглости (овальность)

 

6.7.3.1. При изготовлении новых котлов коэффициент некруглости поперечного сечения рассматриваемых деталей не должен быть более 1% , т.е. a £ 1% .

6.7.3.2. При техническом диагностировании котлов, находящихся в эксплуатации, допускается некруглость поперечного сечения жаровых труб более 1%.

Допустимое рабочее давление для жаровой трубы с учетом овальности не должно быть более    

,

где K = 3,10 - для горизонтальных жаровых труб;

K = 1,85 - для вертикальных жаровых труб.

При выполнении контрольных расчетов по данным измерений толщины стенки вместо s - c следует применять sf - c. Величина sf должна приниматься равной наименьшему значению из четырех измерений толщины по концам двух взаимно перпендикулярных диаметров в одном сечении при числе проверяемых сечений не менее одного на каждой метр длины жаровой трубы.

6.7.3.2.1. Если при измерении поперечного сечения получено a < 1, в расчете принимается         a = 1,0.

6.7.3.2.2. Эксплуатация жаровых труб с некруглостью поперечного сечения более 3% не допускается.

 

6.8. Основные требования к конструкции

 

6.8.1. Расстояние между двумя соседними кольцами жесткости жаровой трубы не должно превышать 2DF.

6.8.2. Для волнистых жаровых труб высота волны должна быть не менее 50 мм.

6.8.3. Не рекомендуется устанавливать конусные переходы на жаровых трубах.

6.8.4. Наличие зазора между трубами и трубной решеткой при некачественной вальцовке труб вызывает перегрев металла трубы и способствует развитию щелевой коррозии. Поэтому для увеличения надежности и срока службы котла рекомендуется подвальцовка труб после приварки их к трубной решетке.

6.8.5. Наружный сварной шов (рис.6.19, а) повышает температуру металла трубной решетки, которая у решеток с трубами, заделанными заподлицо, ниже, чем у решеток с наружными сварными швами (рис.6.19, б).

 

 

Рис.6.19

 

6.8.6. Изоляция толщиной более 50 мм неэффективна, так как дальнейшее увеличение толщины изоляции практически не снижает температуру металла трубной решетки.

6.8.7. Распорные анкерные связи должны быть расположены так, чтобы уменьшить изгибные напряжения. Анкерные связи должны иметь засверления с обеих сторон на длину не менее 30 мм и должны входить в водяное пространство (рис.6.20).

 

 

Рис.6.20

 

Продольные анкерные связи, соединяющие трубные решетки, должны иметь подкладные шайбы диаметром не менее 4Da.

Если в результате расчета анкерной связи по п.6.3.2 наружный диаметр связи получается таким, что не выполняется условие п.6.2.3.2.2, то диаметр концов связей должен быть увеличен (рис.6.20).

 

7. РАСЧЕТ НА ПРОЧНОСТЬ КОЛЛЕКТОРОВ ОТ ДЕЙСТВИЯ НАГРУЗОК

В ОПОРАХ И ПОДВЕСКАХ

 

7.1. Условные обозначения

 

7.1.1. В этом разделе приняты следующие условные обозначения, представленные в табл. 7.1.

 

Таблица 7.1

 

Символ